
NLP - Assignment 2
In this assignment you will. . .

• split text by paragraph.
• stem words.
• create a term-document matrix.
• apply latent semenatic analysis.
• determine the cosine between word representations.

The goal of this assignment is to. . .

• practice regular expressions.
• learn about stemming.
• learn about latent semantic analysis.

Prepare text

The first task of this assignment consists of again choosing a book and preparing the text for creating a
term-documnet and running lsa.

1) Select a new book from Project Gutenberg or use the one of the previous assignment, extract its main
text, and convert everything to lower case.

require(readr)

Loading required package: readr
require(stringr)

Loading required package: stringr
require(lsa)

Loading required package: lsa

Loading required package: SnowballC
require(SnowballC)
require(RSpectra)

Loading required package: RSpectra
load text
text <- read_file('~/Downloads/pg10.txt')
#text <- read_file('http://www.gutenberg.org/ebooks/10.txt.utf-8')

#text <- read_file('~/Dropbox (2.0)/Work/Teaching/2018 Spring/Naturallanguage/Assignments/pg345.txt')

cut text into sections
text_split = str_split(text, '*{3}[:print:]**{3}')

extract main text
main_text = text_split[[1]][2]

text to lower
main_text = str_to_lower(main_text)

1

http://www.gutenberg.org/

2) Split the text into paragraphs. To do this assess the first few hundred characters of the text using
str_sub() (remember the stringr-package?). You will find that the paragraphs are separated by
some sequence of \r and \n. Identify the string that separates the paragraphs and then split the main
text using the string as the pattern with str_split(). Remember that stringr-functions return a
list. Extract the relevant data using [[]].

determine search pattern
pattern = "\r\n\r\n"

get sentences
paragraphs = stringr::str_split(main_text, pattern, simplify = F)[[1]]

3) Iterate over the paragraphs using a loop and in each iteration (1) extract the words of the paragraph,
(2) stem them using wordStem() from the SnowballC-package, and put the paragraph back together
using paste() on the words and setting collapse = ' '. Extract the words using the same approach
as in last week’s assignment. The use of wordStem() is straightforward. Note that you can pass on
vectors, i.e., you can stem all words of the paragraph at once. When having put the paragraph back
together, overwrite the original one in the vector of paragprahs (you could of course also make a copy
first and overwrite the elements in the copy). You should now have a vector of pargraphs consisting
only of stemmed words (without any punctuation, etc.).

iterate through and stem words
for(i in 1:length(paragraphs)){

get tokens
tokens = str_extract_all(paragraphs[i], '[:alpha:]+')

stem tokens
stemmed_tokens = wordStem(tokens)

put back together
paragraphs[i] = paste(stemmed_tokens, collapse = ' ')
}

Term document matrix

4) Now you have one ingredient for your term-document matrix, the documents (paragpraphs in our case).
What’s missing is the set of words you want to evaluate across these documents. Ideally, one uses
all words, however, their number can easily be too large to still be computationally efficient. Thus, I
recommend to ignore words (1) that are stopwords, (2) that are short (e.g., fewer than 5 characters
long), (3) that are too rare (e.g., fewer than 5 occurences in the text). Extract all of these words
from the original main text and then stem them using wordStem() so that they match the stemmed
paragraphs. Finally, determine the unique set of stemmed words using unique(). Note: If you end up
with more than 10,000 words then throw out a few more.

tokenize
word_table = table(str_extract_all(main_text, '[:alpha:]+'))

create select variables
sel_by_length = nchar(names(word_table)) < 5
sel_by_stopwords = names(word_table) %in% tm::stopwords('en')
sel = sel_by_length | sel_by_stopwords | word_table < 5

extract relevant tokens
terms = names(word_table)[!sel]

2

stemmed terms
stemmed_terms = unique(wordStem(terms))

5) Create an empty term document matrix matching the number of paragraphs (columns) and stemmed
words (rows) using matrix(). Then, loop over the stemmed words and count for each word how often
they occur in each of the paragraphs using str_count(). Store the result in the word’s row of the
term-document matrix. Ready is your term-document matrix.

create term-document matrix
td = matrix(nrow = length(stemmed_terms), ncol = length(paragraphs))

fill term-document matrix
for(i in 1:length(stemmed_terms)){

td[i,] = str_count(paragraphs, stemmed_terms[i])
}

Singular value decomposition

6) Run the singular value decomposition using svds() from the RSpectra package. Provide the term-
document matrix as input and specify the number of dimensions. Sinece we are only interested in the
word representations specify set k and nu to some non-zero number, e.g., 200, but nv to zero. This will
speed up computation, which can take a few minutes depending on the length of your text and the
number of words and paragraphs. The result is a list containing the singular values (d) and word’s
singular (u) vectors.

calculate svd with 200d
svd_solution = svds(td, 500, 500, 0)

7) Extract the word representations by multiplying singular values (d) and word’s singular (u). The result
should be an m x k matrix, where m is the number of stemmed words and k the number of singular
values/vectors, which contains the representations for each word within the singular vector space.

extract word representations
representation = svd_solution$u * svd_solution$d

Cosine similarities

8) Determine the cosine similarities for each combination of words using the cosine()-function from the
package lsa. Provide as the argument the word representatons, but note that it expects words to be
represented by columns, not rows. Thus, first transpose the matrix containing the word representations
using t(). Then pass the transposed matrix on to cosine(). The result should be a m x m matrix
containing the cosine similarities for pair of words.

compute cosines
cosines = cosine(t(representation))

name columns and rows
rownames(cosines) = stemmed_terms
colnames(cosines) = stemmed_terms

set diagonal elements to zero
cosines[cosines == 1] = 0

3

9) Now you can study the meaning of words by evaluating the set of closest associates for each word. To do
this useful to first name the rows and columns of the cosine matrix using rownames() and colnames().
Then, you can cut out, for example, the 10th row, which will correspond to the word in the 10th position
in the stemmed words’ vector, using [10,] and inspect the cosine similarities to all of the other words.

inspect closes associates
i = which('drink' == stemmed_terms)
sort(cosines[i,], decreasing = T)[1:20]

dri drinketh worthi rechab hardli make baptism
0.5386823 0.5264322 0.3181838 0.2291856 0.2247678 0.2036085 0.2003666
drank vinegar nazarit betrai meddl mahanaim worshipp
0.1947310 0.1896608 0.1791925 0.1671426 0.1616698 0.1535246 0.1466213
thirst messag skull bethuel guiltless hastili
0.1453109 0.1447390 0.1443119 0.1407206 0.1405733 0.1386043

Report

10) Choose a word of your liking and produce a wordcloud (using wordcloud()) that shows the associates
of that word according to their cosine similarity. Note: You want to remove the actual word from the
cosines, as it necessarily has a cosine similarity of 1. Post the result on twitter.

par(mar=c(0,0,0,0))
wordcloud::wordcloud(stemmed_terms,cosines[i,])

dagon
lovingkind

speechkill

token

lighter

m
is

ch
ie

v

tempt
colour

habit

shiloh

eighteen

swallow

understood
exchang

eaten

shammah

joseph

bo
rn

woman

aijalon

behalf

speedili
justifi

conceiv

fo
rg

at

matrix

common
child

pe
rf

or
m

ki
br

ot
hh

at
ta

av
ah

forgotten

carmelit
couch

flight
thessalonica

salvat

at
ar

ot
h

helez
host

mount
jabbok

va
sh

ti

refin

rephidim

baptiz

bo
ttl

agrippa

perplex

shout

br
ou

gh
te

st

abijam

al
re

ad
i

abiathar
neighbour

serv

chalde

infirm

along

mingl

flint

belteshazzar

narrow

ad
ai

ah

thyself

prove

galilaean

hungri
trial
withdrew

hatr

ja
be

sh
gi

le
ad

hearken

idolat

beeroth

passenghungr

w
ith

al

resurrect

superscript

riddl

stori

joash

grace

hazael

foursquar sloth

po
w

de
r

savour

stedfastli

no
ur

is
h

royal

weapon
might

porter

custodi

sweet

sake

deputi

holdeth

wouldestliar

staff

lusteth

chastis la
w

refug
curiou

eighth

withdrawn

order

venison

standest

remain

zelophehad

justic

carpent

an
yt

h

sprang

jealou

azrikam

world

bruis

birthright

ge
nt

il

lo
dg

kirjatharba

deeper

vine
leprosi

within

conscienc

arm

whole

lean

song

guid

ramah

damag

thereto

abednego

flower

meddl

jehoiachin

worshippeth

fli

twenti

abinadab

dough

troop

rachel

cleaveth

unpunish

aveng

jeroboam

knop

matter

believ

cun
freeli

truli

camest

th
ru

st

merchant

hewer

spous

opportun bondag

pride

togeth

michael

rabbi

observ

peac

throughli

ephratah

ruler

passest

machpelah

bird

dedan

strove

stair
pleasur

rejoic

ye
ar

bough

talebear

zedekiah

speed

assuredli

earnestli

separ

call

heard

recompens

counten

de
ris

patienc

evildo
forbear

wheresoev

jacob

kindli

hebrew

glean

descend
fasten

costli

dibon

yesterdai

jotham

acquaint

devot

fa
vo

ur

run

evil

sh
ea

v

ja
ph

et
h

elihu

jose

belong

bondwoman

battl

wing

expect

censer

furnish

footstool

passov

sheath

thessalonian

taanach

begotten marah

prai

zorah

cluster
terribl

robber

shall

fight

nineveh

agreement

tabl

zadok

whoso

heretofor

thereunto

forest

pirathonit

hananiah

rear
plead

es
hc

ol

in
cl

in

spreadeth

anania
arabia

flood

holden
achbor

salah

pu
bl

ic
an

backslid

ophrah

heber

fo
un

da
t

thinketh

mightest

sa
ck

shelah

vallei

hinnom

breast

crucifi

aphek

sp
ec

ia
l

utterli

athirst

ahilud

bondman

bu
ild

er

jasper

ch
ee

k

is
sa

ch
ar

deed

door

knewest

pervers

warm
chaldean

swine

loop

talmon

love

hailston

tim
na

h

silent

passeth

vintag

behav

cattl

labour

abishag

answerest

pathro

mocker
geshurit

mamr

presumptu

voic

meshech

tabret
affair

overthroweth

ashdod

rotten
winepress

zimri
stole

su
pp

os

divers

chest

tr
od

de
n

gezer

troubleth

bringest

saluteth

ab
il

attend

bedchamb

jeconiah

laden

hundredfold interpret

tenon

pillar

jehoash

elisha
shield

chamber

hasti

lebanon

mightili
form

benefit

lascivi

incens

forsak

agre

convoc

molech

naamah

jabesh

degre

tr
iu

m
ph

co
nc

er
n

gospel

proce

rezin

philistin

absalom

ov
er

th
ro

w

pisgah

ask

disput

beckon

te
ac

h

foolishli

abolish

seventeen

side

shobal

ar
ph

ax
ad

see

dig

wolv

offend

am
al

ek

judgeth

wean

hole

hereaft

number

nostril

doest

open

wed

peopl

chapit

final

overs

vex

merri

puf

izhar

seek

taken

pl
en

ti

flo
w

danc

gift

spot

dwelt

sendest

aholibah

ly

strip

felix

m
ix

hast

shoe

lofti

shadrach

laish

steal

girdl

astoni
reviv

kind

mitr

co
rd

faint

hate

vomit

tri

silenc

valu

ariel

secur

to
rm

en
t

de
ck

fly

de
se

rt

ke
ila

h

fruit

stai

covert

choke

tith

room

roll

ho
li

star

uncov

lie
r

warn

asid

fatl

fin
d

amalekit

piti

dilig

hold

ea
t

ea
r

tail

fix

do

fif
ti

lion

cut

fair

brier

fat

slai

w
al

l

swear

lai

rich

blot

4

	Prepare text
	Term document matrix
	Singular value decomposition
	Cosine similarities
	Report

