NLP - Assignment 2

In this assignment you will. . .

o split text by paragraph.

e stem words.

e create a term-document matrix.

o apply latent semenatic analysis.

¢ determine the cosine between word representations.

The goal of this assignment is to. ..

e practice regular expressions.
e learn about stemming.
e learn about latent semantic analysis.

Prepare text

The first task of this assignment consists of again choosing a book and preparing the text for creating a
term-documnet and running lsa.

1) Select a new book from Project Gutenberg or use the one of the previous assignment, extract its main
text, and convert everything to lower case.

require(readr)

Loading required package: readr

require(stringr)

Loading required package: stringr

require(lsa)

Loading required package: lsa

Loading required package: SnowballC

require (SnowballC)
require (RSpectra)

Loading required package: RSpectra

load text
text <- read_file('~/Downloads/pglO.txt')
#text <- read_file('http://www.gutenberg.org/ebooks/10.txt.utf-8")

#text <- read_file('~/Dropboz (2.0)/Work/Teaching/2018 Spring/Naturallanguage/Assignments/pg345.txt')

cut text into sections
text_split = str_split(text, '*{3}[:print:]**{3}')

extract main text
main_text = text_split[[1]][2]

text to lower
main_text = str_to_lower(main_text)

http://www.gutenberg.org/

2) Split the text into paragraphs. To do this assess the first few hundred characters of the text using
str_sub() (remember the stringr-package?). You will find that the paragraphs are separated by
some sequence of \r and \n. Identify the string that separates the paragraphs and then split the main
text using the string as the pattern with str_split(). Remember that stringr-functions return a
list. Extract the relevant data using [[1].

determine search pattern
pattern = "\r\n\r\n"

get sentences
paragraphs = stringr::str_split(main_text, pattern, simplify = F)[[1]]

3) Iterate over the paragraphs using a loop and in each iteration (1) extract the words of the paragraph,
(2) stem them using wordStem() from the SnowballC-package, and put the paragraph back together
using paste() on the words and setting collapse = ' '. Extract the words using the same approach
as in last week’s assignment. The use of wordStem() is straightforward. Note that you can pass on
vectors, i.e., you can stem all words of the paragraph at once. When having put the paragraph back
together, overwrite the original one in the vector of paragprahs (you could of course also make a copy
first and overwrite the elements in the copy). You should now have a vector of pargraphs consisting
only of stemmed words (without any punctuation, etc.).

iterate through and stem words
for(i in 1:length(paragraphs)){

get tokens
tokens = str_extract_all(paragraphs[i], '[:alpha:]+")

stem tokens
stemmed_tokens = wordStem(tokens)

put back together
paragraphs[i] = paste(stemmed_tokens, collapse = ' ')

}

Term document matrix

4) Now you have one ingredient for your term-document matrix, the documents (paragpraphs in our case).
What’s missing is the set of words you want to evaluate across these documents. Ideally, one uses
all words, however, their number can easily be too large to still be computationally efficient. Thus, I
recommend to ignore words (1) that are stopwords, (2) that are short (e.g., fewer than 5 characters
long), (3) that are too rare (e.g., fewer than 5 occurences in the text). Extract all of these words
from the original main text and then stem them using wordStem() so that they match the stemmed
paragraphs. Finally, determine the unique set of stemmed words using unique (). Note: If you end up
with more than 10,000 words then throw out a few more.

tokentize
word_table = table(str_extract_all(main_text, '[:alpha:]+'))

create select wvartiables

sel_by_length = nchar(names(word_table)) < 5
sel_by_stopwords = names(word_table) %iny tm::stopwords('en')
sel = sel_by_length | sel_by_stopwords | word_table < 5

extract relevant tokens
terms = names(word_table) [!sell

stemmed terms
stemmed_terms = unique(wordStem(terms))

5) Create an empty term document matrix matching the number of paragraphs (columns) and stemmed
words (rows) using matrix (). Then, loop over the stemmed words and count for each word how often
they occur in each of the paragraphs using str_count (). Store the result in the word’s row of the
term-document matrix. Ready is your term-document matrix.

create term-document matriz
td = matrix(nrow = length(stemmed_terms), ncol = length(paragraphs))

fill term-document matriz
for(i in 1:length(stemmed_terms)){
td[i,] = str_count(paragraphs, stemmed_terms[i])

}

Singular value decomposition

6) Run the singular value decomposition using svds() from the RSpectra package. Provide the term-
document matrix as input and specify the number of dimensions. Sinece we are only interested in the
word representations specify set k and nu to some non-zero number, e.g., 200, but nv to zero. This will
speed up computation, which can take a few minutes depending on the length of your text and the
number of words and paragraphs. The result is a list containing the singular values (d) and word’s
singular (u) vectors.

calculate svd with 200d
svd_solution = svds(td, 500, 500, 0)

7) Extract the word representations by multiplying singular values (d) and word’s singular (u). The result
should be an m x k matrix, where m is the number of stemmed words and &k the number of singular
values/vectors, which contains the representations for each word within the singular vector space.

extract word representations
representation = svd_solution$u * svd_solution$d

Cosine similarities

8) Determine the cosine similarities for each combination of words using the cosine ()-function from the
package 1sa. Provide as the argument the word representatons, but note that it expects words to be
represented by columns, not rows. Thus, first transpose the matrix containing the word representations
using t(). Then pass the transposed matrix on to cosine(). The result should be a m x m matrix
containing the cosine similarities for pair of words.

compute cosines
cosines = cosine(t(representation))

mame columns and Tows
rownames (cosines) = stemmed_terms
colnames (cosines) = stemmed_terms

set diagonal elements to zero
cosines[cosines == 1] = 0

9) Now you can study the meaning of words by evaluating the set of closest associates for each word. To do
this useful to first name the rows and columns of the cosine matrix using rownames () and colnames().
Then, you can cut out, for example, the 10th row, which will correspond to the word in the 10th position
in the stemmed words’ vector, using [10,] and inspect the cosine similarities to all of the other words.

inspect closes associates
i = which('drink' == stemmed_terms)
sort(cosines[i,], decreasing = T) [1:20]

dri drinketh worthi rechab hardli make baptism
0.5386823 0.5264322 0.3181838 0.2291856 0.2247678 0.2036085 0.2003666
drank vinegar nazarit betrai meddl mahanaim worshipp
0.1947310 0.1896608 0.1791925 0.1671426 0.1616698 0.1535246 0.1466213
thirst messag skull bethuel guiltless hastili
0.1453109 0.1447390 0.1443119 0.1407206 0.1405733 0.1386043

Report

10) Choose a word of your liking and produce a wordcloud (using wordcloud()) that shows the associates
of that word according to their cosine similarity. Note: You want to remove the actual word from the
cosines, as it necessarily has a cosine similarity of 1. Post the result on twitter.

par (mar=c(0,0,0,0))
wordcloud: :wordcloud (stemmed_terms,cosines([i,])

Perfpt' rezin °PeNbedchamb perversg sjlent anilud angwerestPitij abesh hereaft
rae mightili rotten jasper nineveh terribl mightest 511 zlmrl fooljshli

e swear
offendPh"'Se""'a'shbrev.vwzadokfurmsh acquaint cluster 9" B0 - attend
as'dabollshg trlc passov gepar hebrewabishag belong *“astoni Wlnep ess

C'Efjj"?vo wial ourud evots gSpous loye unpunish yeste rdai dotoubleth

°’£O agreement "8%K90 <jehoiachin rhrightsiove ze ekiah bondmal

S-agre crucifi jose f%ﬂggﬁ“ togethstandest €ighth SPrang wean

roughli
tith 2 salahwheresoey C2PeNt evillusteth StedfaStllda%%Ihblot g mOCll(ﬁ :
99 hehav eliucamest "ghunar . PaSSeNd custodizelophenad assuredliges Urit
. =2 flood opportun = |belteshazzar wouldest bondagtaimon” jehoash
55= tablmerchant %3S ° Zlong perplexspothearken damag pEhreastariel
EES censer michael =c G fi 2= 2backslid
=5 bruis ;m 2 servl€IIN jabbok ga|||aean curlou
Qs ephratah refug r\sposalvatﬂlghtgmoum ol t_ i ‘L? -c;w holden
ole ‘D expect 5 Joashflxg m_:Speed|||>*- thessalonlca 2S agu| £ kindli achbor
ophral Q_fat bird = azrikam Ming! > -q—)‘tjustlfl nelghbour ce |:>ea<:thessan)n|a?1

loop= passest% ba tIZ melghteen 28 behalf abiathar knop pleasur pisgah

forest _ dibon Eowtempts seph atl
host)y, withdrew ramah counten
aphekstair &7 order @ hatr helez colholuqu"'speeichhvtvomaﬂsy trial _remain heard ot
footstool talebearjustic @ vine common ' shilohdagonlighter puf ‘ﬁ— résurrect A Aas
; leprosi =, shout Chlld\— lovingkind shammahmohun ri freell 5 < fellx
ubattl cf o2 . h ﬂlnt tokenswallownddl g Kind 3 8
5 eeper-cg “:'OMCOUC Q trolleaten s WhOSOlrull secur stalm £
5% wmgns ruer O 0 ‘% carmelity %rswod matrix Sinfirm dePUt jeroboam” & S
o twrejolcrtohom-o-g ,_agrlppa exc ang aijalon stoncprovealggadab I’ObberD-_U
vo|c patienc wi in.S, ©2 taken 0 O ean
taanach e & © = CONCEIV forg5ifdn £ 5 weaponavengd 7

¢ o vallei
digrear fagt%%dnv?aqg foursgﬁg?nh |a|m abl]am dancmlght dedan

=
nm
@

-CO nc
3-('D S TPlenti
overthrow

I'

matter af‘falr:u

chaldean descendCo?Ismencponer grace chalde Ihyselfstarg Oyal achel a”plgzlatabret.c

gift thereunto cogyéb owe Iean? ? ide Wsuperscrlptven.son bel gtham :

nohew Stg] rﬁewer th hoeagd savour3 world &t o heber &
olde

elisha.2® ®© 8 WOfS Ippe o Serv ra“ SGen saluteth

pillar cleaveth chastis N0 cce troopbough
shield 8 .ofru”flght speed withdrawn c]hesttwenn machpelah arabia meshech

tenong © . lascivi pirathonit slaj athlrstpresumptu o—
judgeth ¢ vintag bendwoman, [y 1edd| prlde recompenschamber §&

wed lebanon pathro heretofor earneSt|I°20f p lion spreadeth bnﬁges‘?éegre
absalom overthroweth ¢ begottenfalr vais fa]elah passeth forsak convoc Shoe
amg,lekn doest jeconiah covert utter i dlvers = gospel

Sput - benefit thinke aran om: tail
seventeen number Qﬁac!!ggrpn hundre(}ﬂd cattl molech mamr InterpI‘Eth,Penc steal

	Prepare text
	Term document matrix
	Singular value decomposition
	Cosine similarities
	Report

