
Assignment 8: Sentiment Analyzer
In this assignment you will construct your own sentiment analyzer.

1 Word Based Sentiment Analyzer

Write a function that takes a tweet as input and throws back its sentiment. To this end, the function needs to
1) split the tweet into individual words devoid of all punctuation 2) extract any valence terms from this LIST
found among the words, and 3) calculate the valence of the tweet by averaging the corresponding valence
values. Step 2) is best achieved using terms %in% words. Regarding step 1) I recommend implementing the
procedure from Assignment 7 to split sequences of Emojis. This has the positive side-effect that the Emojis
reduce to the smaller set of single-byte Emojis.
------- sentiment analyzer

load my lexicon
valence_lexicon = read.table(paste0(my_path,'vaderSent.txt'), header=T, sep='\t')

define my sentiment analyzer
try to set min as high as possible - will lead to more robust results
my_sentiment_analyzer = function(tweet, min = 5, method = 'mean',

lexicon = valence_lexicon){

remove punctuation
tweet = stri_replace_all_regex(tweet,'[:punct:]','')

split tweet
words = stri_split_regex(tweet,' ')[[1]]

remove empty strings
words = words[words != '']

get table of words
word_table = table(words)

get indices
matches = lexicon[which(lexicon$term %in% names(word_table)),]

expand by occurences
values = rep(matches$sentiment, word_table[matches$term])

return if length(values) >= min
if(length(values) >= min){

check method
if(method == 'mean'){

method mean
sentiment = mean(values)

} else {

1

https://dwulff.github.io/_Naturallanguage/Downloads/vaderSent.txt

method proportion
sentiment = sum(values > 0) / sum(values != 0)

}

} else {

if smaller return NA
sentiment = NA

}

return result
return(sentiment)

}

2 Measure Emoji Valence

Include all or some Emojis in the list of valence terms. Two to ways to achieve this:

2.1a Context Route

The context route shares similarities to the co-occurence approach applied in past assignments. That is, you
can infer the valence of an emoji by assessing the words it co-occurs with. The easiest way to do this is to
derive valence using the Sentiment Analyzer from the section above for the tweets the Emoji occurs in and
averaging the results. A slightly different and possibly better approach would be to determine the proportion
of tweets that are positive for each Emoji. Note, however, that in the latter case the proportions need to be
scaled to the range of -4 and 4 to match the range in the valence term list.

2.1b Similarity Route

The similarity route is a sophisticated version of the context route. That is, rather than defining the context
as the collection of tweets the Emoji occurs in, we can define the context using the similarities learned from
the tweets using, e.g., word2vec. The best way to do this, is to train the model again for all occuring Emojis
and all occuring valence terms and then compute the valence of the Emojis as the sum of valences of the
terms weighted by the cosine similarities between the terms and the respective Emoji. Note, however, that
the cosines need to be normalized so that they sum up to 1 to ensure again a valence range of -4 and 4.

2.2 Expand Valence Terms

After completing either the Context or the Similarity Route add the full set of Emojis (or only a subset, in
which case the extreme ones should be preferred) to the term list.
------- Context route

my tweets
tweets = unique(my_stream$text)[1:10000]

get Emojis
utf8 = as.character(emoji_ids$utf8)

find Emojis
text = paste(tweets, collapse = ' ')
found_emojis = utf8[stri_detect_fixed(text, utf8)]

2

reduce tweets
emojis = paste(utf8, collapse = '|')
tweets_with_emojis = tweets[stri_detect_regex(tweets, emojis)]

sentiments = c()
method = 'mean'
min = 10 # try to set this as high as possible to avoid spurious results

#i.e., if you have enought tweets go for, e.g., 100.
for(i in 1:length(found_emojis)){

keep track
print(i)

find tweets with that emojis
selected_tweets = tweets_with_emojis[stri_detect_fixed(tweets_with_emojis,

found_emojis[i])]

retrieve tweet sentiments
values = sapply(selected_tweets, my_sentiment_analyzer)

calculate sentiment
if(sum(!is.na(selected_tweets)) >= min){

if(method == 'mean'){
sentiment = mean(values, na.rm = T)

} else {
sentiment = sum(values > 0, na.rm = T) / sum(values != 0, na.rm = T)

}
} else {

sentiment = NA
}

store sentiments
sentiments[i] = sentiment

}

------- Expand valence terms

load my lexicon
valence_lexicon = read.table('vaderSent.txt', header=T, sep='\t')

define emoji lexicon
emoji_lexicon = data.frame('term'=found_emojis[!is.na(sentiments)],

'sentiment'=sentiments[!is.na(sentiments)])

add emojis to lexicon
expanded_lexicon = rbind(valence_lexicon, emoji_lexicon)

3 Evaluate Sentiment Analyzer

Download this LIST of classified tweets and use it to evaluate your sentiment analyzer. Specifically, extract
the tweets and apply your sentiment analyzer to each of them. Then compare the predictions of your sentiment

3

https://dwulff.github.io/_Naturallanguage/Downloads/twitterSentCorpus.txt

analyzer with the existing valence classification of positive or negative valence. One way to do this is to
compare summary statistics for the predictions for the positie and the predictions for the negative tweets. For
instance, one could calculate the means and standard devitions of the prediction and calculate a cohen’s d as
a measure of sensitivity. Alternatively, you can analyze the number of times your sentiment analyzer predicts
the correct polarity, i.e., whether a positive tweet is also assigned an above zero number and vice versa. Make
sure that the results demonstrate a successful classification, e.g., by checking the sign and value of d.
get sentiment corpus
corpus = read.table(paste0(my_path,'cleanTwitterSentCorpus.txt'),sep='\t',quote=NULL)

iterate through corpus
sentiments = c()
for(i in 1:nrow(corpus)){

calculate sentiment
sentiment[i] = my_sentiment_analyzer(corpus[i,2], min = 1, lexicon = expanded_lexicon)

}

------- Plotting sentiments by classification (instead of evaluating d)

plot sentiments for positive tweets
hist(sentiment[corpus[,1] == 'positive'], col = rgb(0,1,0,alpha=.5),

border = NA, xlim = c(-4,4), xlab = 'Sentiment', las = 1, main = '',
breaks = seq(-4,4,.4))

plot sentiments for negative tweets
hist(sentiment[corpus[,1] == 'negative'], col = rgb(1,0,0,alpha=.5),

border = NA, xlim = c(-4,4), add = T, breaks = seq(-4,4,.4))

add legend
legend('top', legend = c('positive', 'negative'), bty = 'n', horiz = T,

pch = 15, pt.cex = 2, col = c(rgb(0,1,0,alpha=.5), rgb(1,0,0,alpha=.5)))

Sentiment

F
re

qu
en

cy

−4 −2 0 2 4

0

100

200

300

400

500

600
positive negative

4

END

5

	1 Word Based Sentiment Analyzer
	2 Measure Emoji Valence
	3 Evaluate Sentiment Analyzer

