
yarrr! the pirate’s guide to r 1

2 dr. nathaniel d. phillips

YaRrr!

The Pirate’s Guide to R

D R . N AT H A N I E L D. P H I L L I P S

YA R R R ! T H E P I R AT E ’ S
G U I D E T O R

Copyright © 2016 Dr. Nathaniel D. Phillips

published by

http://www.thepiratesguidetor.com

This document may not be used for any commercial purposes. All rights are reserved by Nathaniel
Phillips.

First printing,

http://www.thepiratesguidetor.com

Contents

Introduction 11

Was Wed Nov 9 2016 a long time ago? 12

Why is R so great? 12

1: Getting Started (and why R is like a relationship) 17

R is like a relationship... 17

Installing R and RStudio 18

Packages 22

The R Reference Card 24

1.5: Jump off the plank and dive in 25

What’s the best way to learn how to swim? 25

Wasn’t that easy?! 28

2: R Basics 29

The basics of R programming 29

A brief style guide: Commenting and spacing 31

Creating new objects with <- 34

Test your R might! 38

3: Creating scalars and vectors 41

Scalars 41

4

Vectors 42

Functions to generate numeric vectors 44

Generating random data 47

Probability Distributions 51

Test your R might! 57

4: Core vector functions 59

Arithmetic operations on vectors 60

Summary statistic functions for numeric vectors 62

Counting functions for discrete and non-numeric data 65

Test your R Might! 71

5: Indexing vectors with [] 73

Indexing vectors with brackets 74

Additional ways to create and use logical vectors 78

Taking the sum and mean of logical vectors to get counts and percentages 78

Using indexing to change specific values of a vector 79

Test your R Might!: Movie data 83

6: Matrices and Data Frames 85

What are matrices and dataframes? 85

Creating matrices and dataframe objects 86

Matrix and dataframe functions 89

Dataframe column names 91

Accessing dataframe columns by name with $ 92

Slicing and dicing dataframes 96

Indexing matrices and dataframes with brackets [rows, columns] 96

Additional tips 100

Test your R might! Pirates and superheroes 101

5

7: Importing, saving, and managing data 103

The working directory 104

The workspace 105

Saving and loading data with .RData files 107

Saving and loading data as .txt files 109

Additional Tips 112

Test your R Might! 113

8: Advanced dataframe manipulation 115

Merging dataframes with merge() 117

aggregate() 119

dplyr 122

Additional Tips 124

Test your R might!: Mmmmm...caffeine 125

9: Plotting: Part 1 127

How does R manage plots? 127

Color basics 129

Scatterplot: plot() 132

Histogram: hist() 134

Barplot: barplot() 135

The Pirate Plot: pirateplot() 138

Low-level plotting functions 142

Adding new points to a plot with points() 143

Adding straight lines with abline() 144

Adding text to a plot with text() 146

Combining text and numbers with paste() 147

Additional low-level plotting functions 151

Saving plots to a file 152

Test your R Might! Purdy pictures 154

6

10: Plotting: Part Deux 157

Advanced colors 157

Plot margins 162

Arranging multiple plots with par(mfrow) and layout 163

Additional Tips 166

11: Inferential Statistics: 1 and 2-sample Null-Hypothesis tests 167

Null vs. Alternative Hypotheses, Descriptive Statistics, Test Statistics, and p-values: A
very short introduction 168

Null v Alternative Hypothesis 168

Hypothesis test objects – htest 172

T-test with t.test() 174

Correlation test with cor.test() 178

Chi-square test 181

Getting APA-style conclusions with the apa function 183

Test your R might! 185

12: ANOVA and Factorial Designs 187

Between-Subjects ANOVA 188

4 Steps to conduct a standard ANOVA in R 190

ANOVA with interactions: (y ∼ x1 * x2) 194

Additional tips 197

Test your R Might! 200

13: Regression 201

The Linear Model 201

Linear regression with lm() 201

Estimating the value of diamonds with lm() 202

Including interactions in models: dv ∼ x1 * x2 206

Comparing regression models with anova() 208

Regression on non-Normal data with glm() 211

7

Getting an ANOVA from a regression model with aov() 214

Additional Tips 215

Test your Might! A ship auction 217

14: Writing your own functions 219

Why would you want to write your own function? 219

The basic structure of a function 220

Additional Tips 225

Test Your R Might! 230

15: Loops 231

What are loops? 232

Creating multiple plots with a loop 235

Updating objects with loop results 236

Loops over multiple indices 237

When and when not to use loops 238

Test your R Might! 240

16: Data Cleaning and preparation 241

The Basics 241

Splitting numerical data into groups using cut() 245

Merging two dataframes 247

Random Data Preparation Tips 249

Appendix 251

Index 255

9

This book is dedicated to Dr. Thomas Moore

and Dr. Wei Lin who taught me everything

I know about statistics, Dr. Dirk Wulff

who taught me everything I know about R,

and Dr. Hansjörg Neth who did the same

with LaTeX.

Introduction

Who am I?

Figure 1: Like a pirate, I work best with
a mug of beer within arms’ reach.

My name is Nathaniel. I am a psychologist with a background in
statistics and judgment and decision making. You can find my R (and
non-R) related musings at http://www.nathanieldphillips.com.

Buy me a mug of beer!

This book is totally free. You are welcome to share it with your
friends, family, hairdresser, plumber, and other loved ones. If you like
it, and want to support me in improving the book, consider buying
me a mug of beer with a donation. You can find a donation link at
http://www.thepiratesguidetor.com.

Where did this book come from?

This whole story started in the Summer of 2015. I was taking a late
night swim on the Bodensee in Konstanz and saw a rusty object stick-
ing out of the water. Upon digging it out, I realized it was an ancient
usb-stick with the word YaRrr inscribed on the side. Intrigued, I
brought it home and plugged it into my laptop. Inside the stick, I
found a single pdf file written entirely in pirate-speak. After watch-
ing several pirate movies, I learned enough pirate-speak to begin
translating the text to English. Sure enough, the book turned out to
be an introduction to R called The Pirate’s Guide to R.

This book clearly has both massive historical and pedagogical
significance. Most importantly, it turns out that pirates were pro-
gramming in R well before the earliest known advent of computers.
Of slightly less significance is that the book has turned out to be a
surprisingly up-to-date and approachable introductory text to R. For
both of these reasons, I felt it was my duty to share the book with the
world.

<http://www.nathanieldphillips.com>
<http://www.thepiratesguidetor.com>

12

Was Wed Nov 9 2016 a long time ago?

I am constantly updating this book – fixing typos, bugs, adding
examples, and adding (and occasionally removing) bad jokes. So
make sure you have the latest version! The version you are reading
right now was updated on Wed Nov 9 2016. If that date is more
than a few months old, stop everything you’re doing and go to
http://www.thepiratesguidetor.com to get the latest version of the
book.

And of course, if you or spot any typos or errors, or have any
recommendations for future versions of the book, please write me at
YaRrr.Book@gmail.com or tweet me @YaRrrBook.

Who is this book for?

While this book was originally written for pirates, I think that anyone
who wants to learn R can benefit from this book. If you haven’t had
an introductory course in statistics, some of the later statistical con-
cepts may be difficult, but I’ll try my best to add brief descriptions of
new topics when necessary. Likewise, if R is your first programming
language, you’ll likely find the first few chapters quite challenging
as you learn the basics of programming. However, if R is your first
programming language, that’s totally fine as what you learn here
will help you in learning other languages as well (if you choose to).
Finally, while the techniques in this book apply to most data analysis
problems, because my background is in experimental psychology I
will cater the course to solving analysis problems commonly faced in
psychological research.

What this book is

This book is meant to introduce you to the basic analytical tools in
R, from basic coding and analyses, to data wrangling, plotting, and
statistical inference.

What this book is not

This book does not cover any one topic in extensive detail. If you are
interested in conducting analyses or creating plots not covered in the
book, I’m sure you’ll find the answer with a quick Google search!

Why is R so great?

As you’ve already gotten this book, you probably already have some
idea why R is so great. However, in order to help prevent you from

<http://www.thepiratesguidetor.com>

13

giving up the first time you run into a programming wall, let me give
you a few more reasons:

1. R is 100% free and as a result, has a huge support community.
Unlike SPSS, Matlab, Excel and JMP, R is, and always will be
completely free. This doesn’t just help your wallet - it means that
a huge community of R programmers will constantly develop an
distribute new R functionality and packages at a speed that leaves
all those other packages in the dust! Unlike Fight Club, the first
rule of R is "Do talk about R!" The size of the R programming
community is staggering. If you ever have a question about how to
implement something in R, a quick Poogle1 search will lead you to 1 I am in the process of creating Poogle

- Google for Pirates. Kickstarter page
coming soon...

your answer virtually every single time.

2. R is the future. To illustrate this, look at the following three figures.
These are Google trend searches for three terms: R Programming,
Matlab, and SPSS. Try and guess which one is which.

Figure 2: I wonder which trend is for
R...

3. R is incredibly versatile. You can use R to do everything from
calculating simple summary statistics, to performing complex
simulations to creating gorgeous plots like the chord diagram on
the right. If you can imagine an analytical task, you can almost
certainly implement it in R.

4. Using RStudio, a program to help you write R code, You can
easily and seamlessly combine R code, analyses, plots, and written
text into elegant documents all in one place using Sweave (R and
Latex) or RMarkdown. In fact, I translated this entire book (the
text, formatting, plots, code...yes, everything) in RStudio using
Sweave. With RStudio and Sweave, instead of trying to manage
two or three programs, say Excel, Word and (sigh) SPSS, where
you find yourself spending half your time copying, pasting and
formatting data, images and test, you can do everything in one
place so nothing gets misread, mistyped, or forgotten.

Making a ChordDiagram from the circlize package
circlize::chordDiagram(matrix(sample(10),

nrow = 2, ncol = 5))

R1

R2

C
1

C2

C3

C4

C
5

0
3

6

9

12

15

18

21

240
36

9

12

15

18

21

24

27
30

3
6

9

0

0

3

6

9

120

3 6 9
0

3

6

9

0

3

6
9

5. Analyses conducted in R are transparent, easily shareable, and
reproducible. If you ask an SPSS user how they conducted a spe-
cific analyses, they will either A) Not remember, B) Try (nervously)
to construct an analysis procedure on the spot that makes sense
- which may or may not correspond to what they actually did

14

months or years ago, or C) Ask you what you are doing in their
house. I used to primarily use SPSS, so I speak from experience
on this. If you ask an R user (who uses good programming tech-
niques!) how they conducted an analysis, they should always be
able to show you the exact code they used. Of course, this doesn’t
mean that they used the appropriate analysis or interpreted it
correctly, but with all the original code, any problems should be
completely transparent!

6. And most importantly of all, R is the programming language of
choice for pirates.

Additional Tips

Because this is a beginner’s book, I try to avoid bombarding you with
too many details and tips when I first introduce a function. For this
reason, at the end of every chapter, I present several tips and tricks
that I think most R users should know once they get comfortable
with the basics. I highly encourage you to read these additional
tips as I expect you’ll find at least some of them very useful if not
invaluable.

Code Chunks

In this book, R code is (almost) always presented in a separate gray
box like this one:

This is a code chunk! You should always be able to

copy and paste code chunks into R

a <- 1 + 2 + 3 + 4 + 5

a

[1] 15

This is called a code chunk. You should always be able to directly
copy and paste code chunks directly into R. If you copy a chunk and
it does not work for you, it is most likely because the code refers to
a package, function, or object that I defined in a previous chunk. If
so, read back and look for a previous chunk that contains the missing
definition. As you’ll soon learn, lines that begin with # are either
comments or output from prior code that R will ignore.

Getting R help online

Here are some resources for R help and inspiration that I can highly
recommend

15

• http://www.r-bloggers.com: R bloggers is my go-to place to
discover the latest and greatest with R.

• http://blog.revolutionanalytics.com: Revolution analytics always
has great R related material.

• http://www.kaggle.com: Kaggle is a really cool website that
posts data analysis challenges that anyone can try to solve. It also
contains a wide range of real-world datasets and tutorials.

• https://www.r-bloggers.com/learning-statistics-on-youtube/: If
you like to learn with YouTube, this page contains many links to R
related YouTube channels.

<http://www.r-bloggers.com>
<http://blog.revolutionanalytics.com>
<http://www.kaggle.com>
<https://www.r-bloggers.com/learning-statistics-on-youtube/>

1: Getting Started (and why R is like a relationship)

R is like a relationship...

Yes, R is very much like a relationship. Like relationships, there are
two major truths to R programming:

I love you R!

…ok JUST DO THE
DAMN T-TEST

…no

Good Times Bad Times

Figure 3: Yep, R will become both your
best friend and your worst nightmare.
The bad times will make the good times
oh so much sweeter.

1. There is nothing more frustrating than when your code does
not work

2. There is nothing more satisfying than when your code does
work!

Anything worth doing, from losing weight to getting a degree,
takes time. Learning R is no different. Especially if this is your
first experience programming, you are going to experience a lot
of headaches when you get started. You will run into error after error
and pound your fists against the table screaming: "WHY ISN’T MY
CODE WORKING?!?!? There must be something wrong with this
stupid software!!!" You will spend hours trying to find a bug in your
code, only to find that - frustratingly enough, you had had an extra
space or missed a comma somewhere. You’ll then wonder why you
ever decided to learn R when (::sigh::) SPSS was so "nice and easy."

Day 1

$RG:LKSD
%#

Ask…and you
shall receive.Day 100

Figure 4: When you first meet R, it will
look so fugly that you’ll wonder if this
is all some kind of sick joke. But trust
me, once you learn how to talk to it,
and clean it up a bit, all your friends
will be crazy jealous.

Fun fact: SPSS stands for "Shitty Piece
of Shitty Shit". True story.

This is perfectly normal! Don’t get discouraged and DON’T GO
BACK TO SPSS! That would be quitting on exercise altogether be-
cause you

Trust me, as you gain more programming experience, you’ll experi-
ence fewer and fewer bugs (though they’ll never go away completely).
Once you get over the initial barriers, you’ll find yourself conducting
analyses much, much faster than you ever did before.

18 yarrr! the pirate’s guide to r

Installing R and RStudio

First things first, let’s download both Base R and Rstudio. Again, R
is the basic software which contains the R programming language.
RStudio is software that makes R programming easier. Of course,
they are totally free and open source.

Download Base R

• Windows: http://cran.r-project.org/bin/windows/base/

• Mac: http://cran.r-project.org/bin/macosx/

Once you’ve installed base R on your computer, try opening it.
When you do you should see a screen like the one in Figure 5 (this
is the Mac version). As you can see, base R is very much bare-bones
software. It’s kind of the equivalent of a simple text editor that comes
with your computer.

Figure 5: Here is how the base R
application looks. While you can use
the base R application alone, most
people I know use RStudio – software
that helps you to write and use R code
more efficiently!

Download RStudio

• Windows and Mac: http://www.rstudio.com/products/rstudio/download/

While you can do pretty much everything you want within base
R, you’ll find that most people these days do their R programming in
an application called RStudio. RStudio is a graphical user interface
(GUI)-like interface for R that makes programming in R a bit easier.
In fact, once you’ve installed RStudio, you’ll likely never need to
open the base R application again. To download and install RStudio
(around 40mb), go to one of the links above and follow the instruc-
tions.

Let’s go ahead and boot up RStudio and see how she looks!

The four RStudio windows

When you open RStudio, you’ll see the following four windows (also
called panes) shown in in Figure 6. However, your windows might
be in a different order that those in Figure 6. If you’d like, you can
change the order of the windows under RStudio preferences. You can

<http://cran.r-project.org/bin/windows/base/>
<http://cran.r-project.org/bin/macosx/>
<http://www.rstudio.com/products/rstudio/download/>

1: getting started (and why r is like a relationship) 19

also change their shape by either clicking the minimize or maximize
buttons on the top right of each panel, or by clicking and dragging
the middle of the borders of the windows.

Figure 6: The four panes of RStudio.

Now, let’s see what each window does in detail.

Source - Your notepad for code

Figure 7: The Source contains all of
your individual R scripts.

The source pane is where you create and edit “R Scripts" - your
collections of code. Don’t worry, R scripts are just text files with
the ".R" extension. When you open RStudio, it will automatically
start a new Untitled script. Before you start typing in an untitled R
script, you should always save the file under a new file name (like,
"2015PirateSurvey.R"). That way, if something on your computer
crashes while you’re working, R will have your code waiting for you
when you re-open RStudio.

You’ll notice that when you’re typing code in a script in the Source
panel, R won’t actually evaluate the code as you type. To have R
actually evaluate your code, you need to first ’send’ the code to the
Console (we’ll talk about this in the next section).

There are many ways to send your code from the Source to the

20 yarrr! the pirate’s guide to r

console. The slowest way is to copy and paste. A faster way is to
highlight the code you wish to evaluate and clicking on the "Run"
button on the top right of the Source. Alternatively, you can use the
hot-key "Command + Return" on Mac, or "Control + Enter" on PC to
send all highlighted code to the console.

Console: R’s Heart

Figure 8: The console the calculation
heart of R. All of your code will (eventu-
ally) go through here.

The console is the heart of R. Here is where R actually evaluates code.
At the beginning of the console you’ll see the character >. This is a
prompt that tells you that R is ready for new code. You can type code
directly into the console after the > prompt and get an immediate
response. For example, if you type 1+1 into the console and press
enter, you’ll see that R immediately gives an output of 2.

1+1

[1] 2

Try calculating 1+1 by typing the code directly into the console -
then press Enter. You should see the result [1] 2. Don’t worry about
the [1] for now, we’ll get to that later. For now, we’re happy if we
just see the 2. Then, type the same code into the Source, and then
send the code to the Console by highlighting the code and clicking
the “Run" button on the top right hand corner of the Source window.
Alternatively, you can use the hot-key "Command + Return" on Mac
or "Control + Enter" on Windows. Tip: Try to write most of your code in

a document in the Source. Only type
directly into the Console to de-bug or
do quick analyses.

So as you can see, you can execute code either by running it from
the Source or by typing it directly into the Console. However, 99%
most of the time, you should be using the Source rather than the
Console. The reason for this is straightforward: If you type code into
the console, it won’t be saved (though you can look back on your
command History). And if you make a mistake in typing code into
the console, you’d have to re-type everything all over again. Instead,
it’s better to write all your code in the Source. When you are ready to
execute some code, you can then send "Run" it to the console.

Environment / History

Figure 9: The environment panel shows
you all the objects you have defined in
your current workspace. You’ll learn
more about workspaces in Chapter 7.

The Environment tab of this panel shows you the names of all the
data objects (like vectors, matrices, and dataframes) that you’ve
defined in your current R session. You can also see information like
the number of observations and rows in data objects. The tab also
has a few clickable actions like “Import Dataset" which will open a
graphical user interface (GUI) for important data into R. However, I
almost never look at this menu.

1: getting started (and why r is like a relationship) 21

The History tab of this panel simply shows you a history of all
the code you’ve previously evaluated in the Console. To be honest,
I never look at this. In fact, I didn’t realize it was even there until I
started writing this tutorial.

As you get more comfortable with R, you might find the Envi-
ronment / History panel useful. But for now you can just ignore
it. If you want to declutter your screen, you can even just minimize
the window by clicking the minimize button on the top right of the
panel.

Files / Plots / Packages / Help

The Files / Plots / Packages / Help panel shows you lots of helpful
information. Let’s go through each tab in detail:

1. Files - The files panel gives you access to the file directory on your
harddrive. One nice feature of the "Files" panel is that you can use
it to set your working directory - once you navigate to a folder
you want to read and save files to, click "More" and then "Set As
Working Directory." We’ll talk about working directories in more
detail soon.

2. Plots - The Plots panel (no big surprise), shows all your plots.
There are buttons for opening the plot in a separate window and
exporting the plot as a pdf or jpeg (though you can also do this
with code using the pdf() or jpeg() functions.)

Let’s see how plots are displayed in the Plots panel. Run the code
on the right to display a histogram of the weights of chickens
stored in the ChickWeight dataset. When you do, you should see a
plot similar to this one show up in the Plots panel.

hist(x = ChickWeight$weight,
main = "Chicken Weights",
xlab = "Weight",
col = "skyblue",
border = "white")

Figure 10: The plot panel contains all
of your plots, like this histogram of the
distribution of chicken weights.

3. Packages - Shows a list of all the R packages installed on your
harddrive and indicates whether or not they are currently loaded.
Packages that are loaded in the current session are checked while
those that are installed but not yet loaded are unchecked. We’ll
discuss packages in more detail in the next section.

4. Help - Help menu for R functions. You can either type the name of
a function in the search window, or use the code ?function.name

to search for a function with the name function.name

To get help and see documentation for a function, type ?fun,
where fun is the name of the function. For example, to get addi-
tional information on the histogram function, run the following
code: Tip: If you ever need to learn

more about an R function: type
?functionname, where functionname
is the name of the function.

22 yarrr! the pirate’s guide to r

?hist

Packages

When you download and install R for the first time, you are installing
the Base R software. Base R will will contain most of the functions
you’ll use on a daily basis like mean()and hist(). However, only
functions written by the original authors of the R language will
appear here. If you want to access data and code written by other
people, you’ll need to install it as a package. An R package is simply a
bunch of data, from functions, to help menus, to vignettes (examples),
stored in one neat package.

An R package is light a lightbulb.
First you need to order it with
install.packages(). Then, every
time you want to use it, you need to
turn it on with library().

A package is like a lightbulb. In order to use it, you first need to
order it to your house (i.e.; your computer) by installing. Once you’ve
installed a package, you never need to install it again. However, every
time you want to actually use the package, you need to turn it on by
loading it. Here’s how to do it.

Installing a new package

Installing a package simply means downloading the package code
onto your personal computer. There are two main ways to install
new packages. The first, and most common, method is to down-
load them from the Comprehensive R Archive Network (CRAN)
https://cran.r-project.org/. CRAN is the central repository for R
packages. To install a new R package from CRAN, you can simply
run the code install.packages("package"), where "package" is the
name of the package. For example, to download the yarrr package,
which contains several data sets and functions we will use in this
book, you should run the following:

CRAN (Comprehensive R Archive
Network) is the main source of R
packages

Install the yarrr package

You only need to install a package once!

install.packages("yarrr")

When you run install.packages() R will download the package
from CRAN. If everything works, you should see some information
about where the package is being downloaded from, in addition to a
progress bar.

When you install a new package, you’ll
see some random text like this you the
download progress. You don’t need to
memorize this.

Like ordering a lightbulb, once you’ve installed a package on your
computer you never need to install it again (unless you want to try to
install a new version of the package). However, every time you want
to use it, you need to turn it on by loading it.

<https://cran.r-project.org/>

1: getting started (and why r is like a relationship) 23

Loading a package

Once you’ve installed a package, it’s on your computer. However, just
because it’s on your computer doesn’t mean R is ready to use it. If
you want to use something, like a function or dataset, from a package
you always need to load the package in your R session first. Just like a
lightbulb, you need to turn it on to use it!

To load a package, you use the library() function. For example,
now that we’ve installed the yarrr package, we can load it with
library("yarrr"):

Load the yarrr package so I can use it!

You have to load a package in every new R session!

library("yarrr")

pirateplot(formula = weight ~ Time,
data = ChickWeight,
pal = "xmen")

Time

w
ei

gh
t

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20 21

Now that you’ve loaded the yarrr package, you can use any of
its functions! One of the coolest functions in this package is called
pirateplot. Rather than telling you what a pirateplot is, let’s just
make one. Run the following code chunk to make your own pi-
rateplot. Don’t worry about the specifics of the code below, you’ll
learn more about how all this works later. For now, just run the code
and marvel at your pirateplot.

pirateplot(formula = weight ~ Time,

data = ChickWeight,

pal = "xmen")

Temporarily loading a package with package::function

There is one way in R to temporarily load a package without using
the library() function. To do this, you can simply use the notation
package::function. The package::function notation simply tells R
to load the package just for this one chunk of code. For example, I
could use the pirateplot function from yarrr package as follows:

Use the pirateplot function in the yarrr package

#

yarrr::pirateplot(formula = weight ~ Diet,

data = ChickWeight)

Again, you can think about the package::function method as a
way to temporarily loading a package for a single line of code. One
benefit of using the package::function notation is that it’s immedi-
ately clear to anyone reading the code which package contains the
function. However, a drawback is that if you are using a function

24 yarrr! the pirate’s guide to r

from a package often, it forces you to constantly retype the package
name. You can use whichever method makes sense for you.

The R Reference Card

Figure 11: The R reference card written
by Tom Short is absolutely indispens-
able!

Over the course of this book, you will be learning lots of new func-
tions. Wouldn’t it be nice if someone created a Cheatsheet / Notecard
of many common R functions? Yes it would, and thankfully Tom
Short has done this in his creation of the R Reference Card. I highly
encourage you to print this out and start highlighting functions as
you learn them!

You can access the pdf of the R reference card from https://cran.r-
project.org/doc/contrib/Short-refcard.pdf.

Finished!

That’s it for this chapter! All you did was install the most power-
ful statistical package on the planet used by top universities and
companies like Google. No big deal.

<https://cran.r-project.org/doc/contrib/Short-refcard.pdf>
<https://cran.r-project.org/doc/contrib/Short-refcard.pdf>

1.5: Jump off the plank and dive in

Figure 12: Despite what you might find
at family friendly waterparks – this is
NOT how real pirate swimming lessons
look.

What’s the best way to learn how to swim?

What’s the first exercise on the first day of pirate swimming lessons?
While it would be cute if they all had little inflatible pirate ships to
swim around in – unfortunately this is not the case. Instead, those
baby pirates take a walk off their baby planks so they can get a
taste of what they’re in for. Turns out, learning R is the same way.
Let’s jump in. In this chapter, you’ll see how easy it is to calculate
basic statistics and create plots in R. Don’t worry if the code you’re
running doesn’t make immediate sense – just marvel at how easy it is
to do this in R!

pirates

In this section, we’ll analyze a dataset called...wait for it...pirates!
The dataset contains data from a survey of 1,000 pirates. The data is
contained in the yarrr package, so make sure you’ve installed that
first.

If you haven’t downloaded the
yarrr package yet, run the following
commands:

Install the yarrr package
install.packages('yarrr')

First, we’ll load the yarrr package. This will give us access to the
pirates dataset.

library(yarrr)

Next, we’ll look at the help menu for the pirates dataset using the
question mark ?

?pirates

First, let’s take a look at the first few rows of the dataset using the
head() function. This will give you a visual idea of how the dataset is
structured. Congratulations! you just used one

of your first functions! The head()
function returns the first few rows of a
dataset. I use head() all the time.

head(pirates)

You can look at the names of the columns in the dataset with the
names() function: I got names of id, sex, age, height...

26 yarrr! the pirate’s guide to r

names(pirates)

Now let’s calculate some basic statistics on the entire dataset. We’ll
calculate the mean age, maximum height, and number of pirates of
each sex: As you can see, to access a column in a

dataframe, you use the $ operator. For
example, pirates$age access the age
column of the pirates dataset

What is the mean age?

mean(pirates$age)

What was the tallest pirate?

max(pirates$height, na.rm = T)

How many pirates are there of each sex?

table(pirates$sex)

Now, let’s calculate statistics for different groups of pirates. For
example, the following code will calculate the mean age of pirates for
each sex.2 2 I got a mean age of 29.92, 24.97, and 27

for female, male, and unknown pirates
respectivelyaggregate(formula = age ~ sex,

data = pirates,

FUN = mean)

Cool stuff, now let’s make a plot! We’ll plot the relationship be-
tween pirate’s height and weight. We’ll also include a blue regression
line to measure the strength of the relationship.

Here’s how my plot looks

140 160 180 200

40
60

80
10

0

My first scatterplot of pirate data!

Height (in cm)

W
ei

gh
t (

in
 k

g)

Create scatterplot

plot(x = pirates$height,

y = pirates$weight,

main = 'My first scatterplot of pirate data!',

xlab = 'Height (in cm)',

ylab = 'Weight (in kg)',

pch = 16, # Filled circles

col = gray(.0, .1) # Transparent gray

)

Add the gridlines

grid()

Create a linear regression model

model <- lm(formula = weight ~ height,

data = pirates)

Add regression to plot

1.5: jump off the plank and dive in 27

abline(model,

col = 'blue')

Scatterplots are great for showing the relationship between two
continuous variables, but what if your independent variable is not
continuous? In this case, pirateplots are a good option. Let’s create
a pirateplot showing the distribution of heights based on a pirate’s
favorite sword:

Create a pirateplot showing the distribution of ages

by movie ratings

pirateplot(formula = age ~ sword.type,

data = pirates,

main = "Pirateplot of ages by favorite sword")

Here’s how my pirateplot looks

Pirateplot of ages by favorite sword

sword.type

ag
e

10

15

20

25

30

35

40

45

50

banana cutlass sabre scimitar

Now, let’s do some basic hypothesis tests. First, let’s conduct a
two-sample t-test to see if there is a significant difference between the
ages of pirates who do wear a headband, and those who do not:3

3 I got a test statistic of 0.35 and a
p-value of 0.73

Age by headband t-test

t.test(formula = age ~ headband,

data = pirates,

alternative = 'two.sided')

Next, let’s test if there a significant correlation between a pirate’s
height and weight:4 4 For this correlation test, I got a correla-

tion of 0.93, a test statistic of 81.16, and
a p-value of 2.2e-16 (which is basically
0).cor.test(formula = ~ height + weight,

data = pirates)

Now, let’s do an ANOVA testing if there is a difference between
the number of tattoos pirates have based on their favorite sword:5 5 I got a p-value of 2.11 × 10−32 which is

pretty much 0

Create tattoos model

tat.sword.lm <- lm(formula = tattoos ~ sword.type,

data = pirates)

Get ANOVA table

anova(tat.sword.lm)

Finally, let’s run a regression analysis to see if a pirate’s age,
weight, and number of tattoos (s)he has predicts how many trea-
sure chests he/she’s found:

28 yarrr! the pirate’s guide to r

revenue.model <- lm(formula = tchests ~ age + weight + tattoos,

data = pirates)

summary(revenue.model)

Now, let’s repeat some of our previous analyses with Bayesian
versions. First we’ll install6 and load the BayesFactor package which 6 You need to be connected to the inter-

net in order to install the BayesFactor
package. If you aren’t, you’ll have to
skip the rest of these exercises.

contains the Bayesian statistics functions we’ll use:

install.packages('BayesFactor')

library(BayesFactor)

Now that the packages is installed and loaded, we’re good to go!
Let’s do a Bayesian version of our earlier t-test asking if pirates who
wear a headband are older or younger than those who do not.7 : 7 I got a Bayes Factor of 0.12 which is

pretty darn strong evidence against the
null hypothesis.ttestBF(formula = age ~ headband,

data = pirates)

Now, let’s repeat our previous regression analysis with a Bayesian
version:8 8 Comparing the full model to the age

only model, I found strong evidence for
the simpler, age only model (bf = 0.05)# Full model with all predictors

full <- lmBF(formula = tchests ~ age + weight + tattoos,

data = pirates)

Reduced model with only age

age.only <- lmBF(formula = tchests ~ age,

data = pirates)

Compare full model to age only model

full / age.only

Wasn’t that easy?!

Wait...wait...WAIT! Did you seriously just calculate descriptive statis-
tics, a t-test, an ANOVA, and a regression, create a scatterplot and
a pirateplot, AND do both a Bayesian t-test and regression analysis.
Yup. Imagine how long it would have taken to explain how to do all
that in SPSS9. And while you haven’t really learned how R works 9 Oh wait I forgot, SPSS can’t even do

Bayesian statisticsyet, I’d bet my beard that you could easily alter the previous code to
do lots of other analyses. Of course, don’t worry if some or all of the
previous code didn’t make sense. Soon...it will all be clear.

Now that you’ve gotten wet, let’s learn how to swim.

2: R Basics

If you’re like most people, you think of R as a statistics program.
However, while R is definitely the coolest, most badass, pirate-y
way to conduct statistics – it’s not really a program. Rather, it’s a
programming language that was written by and for statisticians. To
learn more about the history of R...just...you know...Google it.

Figure 13: Ross Ihaka and Robert
Gentlemen. You have these two pirates
to thank for creating R! You might not
think much of them now, but by the
end of this book there’s a good chance
you’ll be dressing up as one of them on
Halloween.

In this chapter, we’ll go over the basics of the R language and the
RStudio programming environment.

The basics of R programming

The command-line interpreter

R code, on its own, is just text. You can write R code in a new script
within R or RStudio, or in any text editor. Hell, you can write R code
on Twitter if you want. However, just writing the code won’t do the
whole job – in order for your code to be executed (aka, interpreted)
you need to send it to R’s command-line interpreter. In RStudio, the
command-line interpreter is called the Console.

In R, the command-line interpreter starts with the > symbol.
This is called the prompt. Why is it called the prompt? Well, it’s
“prompting” you to feed it with some R code. The fastest way to have
R evaluate code is to type your R code directly into the command-
line interpreter. For example, if you type 1+1 into the interpreter and
hit enter you’ll see the following

1+1

[1] 2

Figure 14: Yep. R is really just a fancy
calculator. This R programming device
was found on a shipwreck on the
Bodensee in Germany. I stole it from a
museum and made a pretty sweet plot
with it. But I don’t want to show it to
you.

As you can see, R returned the (thankfully correct) value of 2.10

10 You’ll notice that the console also
returns the text [1]. This is just telling
you you the index of the value next to it.
Don’t worry about this for now, it will
make more sense later.

As you can see, R can, thankfully, do basic calculations. In fact, at its
heart, R is technically just a fancy calculator. But that’s like saying
Michael Jordan is “just” a fancy ball bouncer or Donald Trump is
“just” a guy with a dead fox on his head. It (and they), are much
more than that.

30 yarrr! the pirate’s guide to r

Writing R scripts in an editor

There are certainly many cases where it makes sense to type code
directly into the console. For example, to open a help menu for a new
function with the ? command, to take a quick look at a dataset with
the head() function, or to do simple calculations like 1+1, you should
type directly into the console. However, the problem with writing all
your code in the console is that nothing that you write will be saved.
So if you make an error, or want to make a change to some earlier
code, you have to type it all over again. Not very efficient. For this
(and many more reasons), you’ll should write any important code
that you want to save as an R script11 in an editor. 11 An R script is just a bunch of R code

in a single file. You can write an R
script in any text editor, but you should
save it with the .R suffix to make it
clear that it contains R code.

In RStudio, you’ll write your R code in the...wait for it...Editor win-
dow. To start writing a new R script in RStudio, click File – New File
– R Script.12 When you open a new script, you’ll see a blank page

12 Shortcut! To create a new script in R,
you can also use the command–shift–N
shortcut on Mac. I don’t know what it
is on PC...and I don’t want to know.

waiting for you to write as much R code as you’d like. In Figure 15, I
have a new script called “myfirstscript.R” with a few random calcula-
tions.

Figure 15: Here’s how a new script
looks in the editor window on RStudio.
The code you type won’t be executed
until you send it to the console.

Send code from an editor to the console

When you type code into an R script, you’ll notice that, unlike typing
code into the Console, nothing happens. In order for R to interpret
the code, you need to send it from the Editor to the Console. There
are a few ways to do this, here are the three most common ways:

1. Copy the code from the Editor (or anywhere that has valid R code),
and paste it into the Console (using Command–V).

2: r basics 31

2. Highlight the code you want to run (with your mouse or by hold-
ing Shift), then use the Command–Return shortcut (see Figure 16).

3. Place the cursor on a single line you want to run, then use the
Command–Return shortcut to run just that line.

Figure 16: Ah...the Command–Return
shortcut (Control–Enter on PC) to send
highlighted code from the Editor to
the Console. Get used to this shortcut
people. You’re going to be using this a
lot

99% of the time, I use method 2, where I highlight the code I want,
then use the Command–Return shortcut. However, method 3 is great
for trouble-shooting code line-by-line.

A brief style guide: Commenting and spacing

Like all programming languages, R isn’t just meant to be read by
a computer, it’s also meant to be read by other humans – or very
well-trained dolphins. For this reason, it’s important that your code
looks nice and is understandable to other people and your future self.
To keep things brief, I won’t provide a complete style guide – instead
I’ll focus on the two most critical aspects of good style: commenting
and spacing.13 13 For a list of recommendations on how

to make your code easier to follow,
check out Google’s own company
R Style guide at https://google-
styleguide.googlecode.com/svn/trunk/Rguide.xml

Figure 17: As Stan discovered in season
six of South Park, your future self is a
lazy, possibly intoxicated moron. So do
your future self a favor and make your
code look nice. Also maybe go for a run
once in a while.

Commenting code with the # (pound) sign

Comments are completely ignored by R and are just there for
whomever is reading the code. You can use comments to explain
what a certain line of code is doing, or just to visually separate
meaningful chunks of code from each other. Comments in R are
designated by a # (pound) sign. Whenever R encounters a # sign, it
will ignore all the code after the # sign on that line. Additionally, in
most coding editors (like RStudio) the editor will display comments
in a separate color than standard R code to remind you that it’s a
comment:

Here is an example of a short script that is nicely commented. Try
to make your scripts look like this!

Author: Pirate Jack

Title: My nicely commented R Script

Date: None today :(

Step 1: Load the yarrr package

library(yarrr)

Step 2: See the column names in the movies dataset

names(movies)

Step 3: Calculations

<https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml>
<https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml>

32 yarrr! the pirate’s guide to r

What percent of movies are sequels?

mean(movies$sequel, na.rm = T)

How much did Pirate's of the Caribbean: On Strager Tides make?

movies$revenue.all[movies$name == 'Pirates of the Caribbean: On Stranger Tides']

I cannot stress enough how important it is to comment your code!
Trust me, even if you don’t plan on sharing your code with anyone
else, keep in mind that your future self will be reading it in the
future.

Spacing

Howwouldyouliketoreadabookiftherewerenospacesbetweenwords?
I’mguessingyouwouldn’t. Soeverytimeyouwritecodewithoutprop-
erspacing,rememberthissentence.

Commenting isn’t the only way to make your code legible. It’s
important to make appropriate use of spaces and line breaks. For
example, I include spaces between arithmetic operators (like =, + and
-) and after commas (which we’ll get to later). For example, look at
the following code:

Figure 18: Don’t make your code
look like what a sick Triceratops with
diarrhea left behind for Jeff Goldblum.

a<-(100+3)-2

mean(c(a/100,642564624.34))

t.test(formula=revenue.all~sequel,data=movies)

plot(x=movies$budget,y=movies$dvd.usa,main="myplot")

That code looks like shit. Don’t write code like that. It makes my
eyes hurt. Now, let’s use some liberal amounts of commenting and
spacing to make it look less shitty.

Some meaningless calculations. Not important

a <- (100 + 3) - 2

mean(c(a / 100, 642564624.34))

t.test comparing revenue of sequels v non-sequels

t.test(formula = revenue.all ~ sequel,

data = movies)

A scatterplot of budget and dvd revenue.

Hard to see a relationship

2: r basics 33

plot(x = movies$budget,

y = movies$dvd.usa,

main = "myplot")

See how much better that second chunk of code looks? Not only
do the comments tell us the purpose behind the code, but there are
spaces and line-breaks separating distinct elements. For a full R style guide, check out

Google’s internal R style guide at
https://google.github.io/styleguide/Rguide.xml

Objects and functions. Functions and objects

To understand how R works, you need to know that R revolves
around two things: objects and functions. Almost everything in R is
either an object or a function. In the following code chunk, I’ll define
a simple object called tattoos using a function c():

1: Create a vector object called tattoos

tattoos <- c(4, 67, 23, 4, 10, 35)

2: Apply the mean() function to the tattoos object

mean(tattoos)

[1] 23.8

What is an object? An object is a thing – like a number, a dataset,
a summary statistic like a mean or standard deviation, or a statistical
test. Objects come in many different shapes and sizes in R. There are
simple objects like scalars which represent single numbers, vectors
(like our tattoos object above) which represent several numbers,
more complex objects like dataframes which represent tables of data,
and even more complex objects like hypothesis tests or regression which
contain all sorts of statistical information.

Different types of objects have different attributes. For example,
a vector of data has a length attribute (i.e.; how many numbers are
in the vector), while a hypothesis test has many attributes such as a
test-statistic and a p-value.14 14 Don’t worry if this is a bit confusing

now – it will all become clearer when
you meet these new objects in person in
later chapters. For now, just know that
objects in R are things, and different
objects have different attributes.

What is a function? A function is a procedure that typically takes
one or more objects as arguments (aka, inputs), does something with
those objects, then returns a new object. For example, the mean() func-
tion we used above takes a vector object (like tattoos) of numeric
data as an argument, calculates the arithmetic mean of those data,
then returns a single number (a scalar) as a result.15 15 A great thing about R is that you can

easily create your own functions that
do whatever you want – but we’ll get to
that much later in the book. Thankfully,
R has hundreds (thousands?) of built-in
functions that perform most of the basic
analysis tasks you can think of.

99% of the time you are using R, you will do the following: 1) De-
fine objects. 2) Apply functions to those objects. 3) Repeat!. Seriously,
that’s about it. However, as you’ll soon learn, the hard part is know-
ing how to define objects they way you want them, and knowing

34 yarrr! the pirate’s guide to r

which function(s) will accomplish the task you want for your objects.

Creating new objects with <-

By now you know that you can use R to do simple calculations. But
to really take advantage of R, you need to know how to create and
manipulate objects. All of the data, analyses, and even plots, you
use and create are, or can be, saved as objects in R. For example
the movies dataset which we’ve used before is an object stored in
the yarrr package. This object was defined in the yarrr package
with the name movies. When you loaded the yarrr package with
the library(’yarrr’) command, you told R to give you access to
the movies object. Once the object was loaded, we could use it to
calculate descriptive statistics, hypothesis tests, and to create plots.

To create new objects in R, you need to do object assignment. Object
assignment is our way of storing information, such as a number or
a statistical test, into something we can easily refer to later. This is a
pretty big deal. Object assignment allows us to store data objects un-
der relevant names which we can then use to slice and dice specific
data objects anytime we’d like to.

To do an assignment, we use the almighty <- operator called
”assign.”16 16 You can use = instead of <- for object

assignment; however, it is common
practice in R to use <-.object <- []

To assign something to a new object (or to update an existing
object), use the notation object <- [], where object is the new (or
updated) object, and [] is whatever you want to store in object.
Let’s start by creating a very simple object called a and assigning the
value of 100 to it: Good object names strike a balance

between being easy to type (i.e.; short
names) and interpret. If you have
several datasets, it’s probably not a
good idea to name them a, b, c be-
cause you’ll forget which is which.
However, using long names like
March2015Group1OnlyFemales will
give you carpel tunnel syndrome.

a <- 100

Once you run this code, you’ll notice that R doesn’t tell you any-
thing. However, as long as you didn’t type something wrong, R
should now have a new object called a which contains the number
100. If you want to see the value, you need to call the object by just
executing its name. This will print the value of the object to the
console:

a

[1] 100

Now, R will print the value of a (in this case 100) to the console. If
you try to evaluate an object that is not yet defined, R will return an

2: r basics 35

error. For example, let’s try to print the object b which we haven’t yet
defined:

b

Error in eval(expr, envir, enclos): object ’b’ not found

As you can see, R yelled at us because the object b hasn’t been
defined yet.

Once you’ve defined an object, you can combine it with other
objects using basic arithmetic. Let’s create objects a and b and play
around with them.

a <- 1

b <- 100

What is a + b?

a + b

[1] 101

Assign a + b to a new object (c)

c <- a + b

What is c?

c

[1] 101

Top change an object, you must assign it again!

Normally I try to avoid excessive emphasis, but because this next
sentence is so important, I have to just go for it. Here it goes...

To change an object, you must assign it again!

No matter what you do with an object, if you don’t assign it again,
it won’t change. For example, let’s say you have an object z with a
value of 0. You’d like to add 1 to z in order to make it 1. To do this,
you might want to just enter z + 1 – but that won’t do the job. Here’s
what happens if you don’t assign it again:

36 yarrr! the pirate’s guide to r

z <- 0

z + 1

Ok! Now let’s see the value of z

z

[1] 0

Damn! As you can see, the value of z is still 0! What went wrong?
Oh yeah...

To change an object, you must
assign it again!

The problem is that when we wrote z + 1 on the second line, R
thought we just wanted it to calculate and print the value of z + 1,
without storing the result as a new z object. If we want to actually
update the value of z, we need to reassign the result back to z as
follows:

z <- 0

z <- z + 1 # Now I'm REALLY changing z

z

[1] 1

Phew, z is now 1. Because we used assignment, z has been up-
dated. About freaking time.

How to name objects

You can create object names using any combination of letters and a
few special characters (like .). Here are some valid object names

Valid object names

group.mean <- 10.21

my.age <- 32

FavoritePirate <- "Jack Sparrow"

sum.1.to.5 <- 1 + 2 + 3 + 4 + 5

All the object names above are perfectly valid. Now, let’s look at
some examples of invalid object names. These object names are all
invalid because they either contain spaces, start with numbers, or
have invalid characters:

2: r basics 37

Invalid object names!

famale ages <- 50 # spaces

5experiment <- 50 # starts with a number

a! <- 50 # has an invalid character

If you try running the code above in R, you will receive a warning
message starting with Error: unexpected symbol. Anytime you see
this warning in R, it almost always means that you have a naming
error of some kind.

R is case-sensitive!

Like English, R is case-sensitive – it R treats capital letters differently
from lower-case letters. For example, the four following objects
Plunder, plunder and PLUNDER are totally different objects in R:

Figure 19: Like a text message, you
should probably watch your use of
capitalization in R.

These are all different objects

Plunder <- 1

plunder <- 100

PLUNDER <- 5

I try to avoid using too many capital letters in object names be-
cause they require me to hold the shift key. This may sound silly, but
you’d be surprised how much easier it is to type mydata than MyData

100 times.

Example: Pirates of The Caribbean

Let’s do a more practical example – we’ll define an object called
blackpearl.usd which has the global revenue of Pirates of the
Caribbean: Curse of the Black Pearl in U.S. dollars. A quick Google
search showed me that the revenue was $634,954,103. I’ll create the
new object using assignment:

blackpearl.usd <- 634954103

Now, my fellow European pirates might want to know how much
this is in Euros. Let’s create a new object called blackpearl.eur

which converts our original value to Euros by multiplying the origi-
nal amount by 0.88 (assuming 1 USD = 0.88 EUR)

blackpearl.eur <- blackpearl.usd * 0.88

blackpearl.eur

[1] 5.59e+08

38 yarrr! the pirate’s guide to r

It looks like the movie made 5.588 × 108 in Euros. Not bad. Now,
let’s see how much more Pirates of the Caribbean 2: Dead Man’s
Chest made compared to "Curse of the Black Pearl." Another Google
search uncovered that Dead Man’s Chest made $1,066,215,812 (that
wasn’t a mistype, the freaking movie made over a billion dollars).

deadman.usd <- 1066215812

Now, I’ll divide deadman.usd by blackpearl.usd:

deadman.usd / blackpearl.usd

[1] 1.68

It looks like "Dead Man’s Chest" made 68% more than "Curse of
the Black Pearl" - not bad for two movies based off of a ride from
Disneyland.

Test your R might!

1. Create a new R script. Using comments, write your name, the date,
and ”Testing my Chapter 2 R Might” at the top of the script. Write
your answers to the rest of these exercises on this script, and be
sure to copy and paste the original questions using comments!
Your script should only contain valid R code and comments.

2. Which (if any) of the following objects names is/are invalid?

thisone <- 1

THISONE <- 2

this.one <- 3

This.1 <- 4

ThIS.....ON...E <- 5

This!One! <- 6

lkjasdfkjsdf <- 7

3. 2015 was a good year for pirate booty - your ship collected 100,800

gold coins. Create an object called gold.in.2015 and assign the
correct value to it.

4. Oops, during the last inspection we discovered that one of your
pirates “Skippy McGee" hid 800 gold coins in his underwear. Go
ahead and add those gold coins to the object gold.in.2015. Next,
create an object called plank.list with the name of the pirate
thief.

2: r basics 39

5. Look at the code below. What will R return after the third line?
Make a prediction, then test the code yourself.

a <- 10

a + 10

a

3: Creating scalars and vectors

Crew information

captain.name <- "Jack"

captain.age <- 33

crew.names <- c("Heath", "Vincent", "Maya", "Becki")

crew.ages <- c(19, 35, 22, 44)

crew.sex <- c(rep("M", times = 2), rep("F", times = 2))

crew.ages.decade <- crew.ages / 10

Earnings over first 10 days at sea

days <- 1:10

gold <- seq(from = 10, to = 100, by = 10)

silver <- rep(50, times = 10)

total <- gold + silver

People are not objects. But R is full of them. Here are some of the
basic ones.

Scalars

The simplest object type in R is a scalar. A scalar object is just a single
value like a number or a name. In the previous chapter we defined
several scalar objects. Here are examples of numeric scalars:

a <- 100

b <- 3 / 100

c <- (a + b) / b

scalar v vector v matrix

par(mar = rep(1, 4))
plot(1, xlim = c(0, 4), ylim = c(-.5, 5),

xlab = "", ylab = "",
xaxt = "n", yaxt = "n",
bty = "n", type = "n")

scalar
rect(rep(0, 1), rep(0, 1), rep(1, 1), rep(1, 1))
text(.5, -.5, "scalar")

Vector
rect(rep(2, 5), 0:4, rep(3, 5), 1:5)
text(2.5, -.5, "Vector")

scalar Vector

Figure 20: Visual depiction of a scalar
and vector. Deep shit. Wait until we get
to matrices - you’re going to lose it.

Scalars don’t have to be numeric, they can also be characters (also
known as strings). In R, you denote characters using quotation marks.
Here are examples of character scalars:

42 yarrr! the pirate’s guide to r

d <- "ship"

e <- "cannon"

f <- "Do any modern armies still use cannons?"

As you can imagine, R treats numeric and character scalars dif-
ferently. For example, while you can do basic arithmetic operations
on numeric scalars – they won’t work on character scalars. If you try
to perform numeric operations (like addition) on character scalars,
you’ll get an error like this one:

a <- "1"

b <- "2"

a + b

Error in a + b: non-numeric argument to binary operator

If you see an error like this one, it means that you’re trying to
apply numeric operations to character objects. That’s just sick and
wrong.

Vectors

Now let’s move onto vectors. A vector object is just a combination of
several scalars stored as a single object. For example, the numbers
from one to ten could be a vector of length 10, and the characters
in the English alphabet could be a vector of length 26. Like scalars,
vectors can be either numeric or character (but not both!).

There are many ways to create vectors in R. Here are the methods
we will cover in this chapter:

Function Example Result
c(a, b) c(1, 5, 9) [1, 5, 9]
a:b 5:10 [5, 6, 7, 8, 9, 10]
seq(from, to, by, length.out) seq(from = 0, to = 6, by = 2) [0, 2, 4, 6]
rep(x, times, each, length.out) rep(c(1, 5), times = 2, each = 2) [1, 1, 5, 5, 1, 1, 5, 5]

Ok now it’s time to learn our first function! We’ll start with c()

which allows you to build vectors.

c(a, b, c, ...)

a, b, c, ...

One or more objects to be combined into a vector

3: creating scalars and vectors 43

The simplest way to create a vector is with the c() function. The c
here stands for concatenate, which means "bring them together". The
c() function takes several scalars as arguments, and returns a vector
containing those objects. When using c(), place a comma in between
the objects (scalars or vectors) you want to combine:

Let’s use the c() function to create a vector called a containing the
integers from 1 to 5.

a <- c(1, 2, 3, 4, 5)

Let’s look at the object by evaluating it in the console:

a

[1] 1 2 3 4 5

As you can see, R has stored all 5 numbers in the object a. Thanks
R!

You can also create longer vectors by combining vectors you have
already defined. Let’s create a vector of the numbers from 1 to 10

by first generating a vector a from 1 to 5, and a vector b from 6 to 10

then combine them into a single vector c:

a <- c(1, 2, 3, 4, 5)

b <- c(6, 7, 8, 9, 10)

c <- c(a, b)

c

[1] 1 2 3 4 5 6 7 8 9 10

You can also create character vectors by using the c() function to
combine character scalars into character vectors:

Figure 21: This is not a pipe. It is a
character vector.

char.vec <- c("this", "is", "not", "a", "pipe")

char.vec

[1] "this" "is" "not" "a" "pipe"

Vectors contain either numbers or characters, not both!

A vector can only contain one type of scalar: either numeric or char-
acter. If you try to create a vector with numeric and character scalars,
then R will convert all of the numeric scalars to characters. In the
next code chunk, I’ll create a new vector called my.vec that contains a
mixture of numeric and character scalars.

44 yarrr! the pirate’s guide to r

my.vec <- c("a", 1, "b", 2, "c", 3)

my.vec

[1] "a" "1" "b" "2" "c" "3"

As you can see from the output, my.vec is stored as a character
vector where all the numbers are converted to characters.

Functions to generate numeric vectors

While the c() function is the most straightforward way to create a
vector, it’s also one of the most tedious. For example, let’s say you
wanted to create a vector of all integers from 1 to 100. You definitely
don’t want to have to type all the numbers into a c() operator. Thank-
fully, R has many simple built-in functions for generating numeric
vectors. Let’s start with three of them: a:b, seq(), and rep():

a:b

The a:b function takes two scalars a and b as arguments, and returns
a vector of numbers from the starting point a to the ending point b in
steps of 1.

a:b

a

The start of the sequence

b

The end of the sequence

Here are some examples of the a:b function in action. As you’ll
see, you can go backwards or forwards, or make sequences between
non-integers:

1:10

[1] 1 2 3 4 5 6 7 8 9 10

10:1

[1] 10 9 8 7 6 5 4 3 2 1

2.5:8.5

[1] 2.5 3.5 4.5 5.5 6.5 7.5 8.5

3: creating scalars and vectors 45

seq()

The seq() function is a more flexible version of a:b. Like a:b, seq()
allows you to create a sequence from a starting number to an ending
number. However, seq(), has additional arguments that allow you
to specify either the size of the steps between numbers, or the total
length of the sequence:

seq(from, to, by)

from

The start of the sequence

to

The end of the sequence

by

The step-size of the sequence

length.out

The desired length of the final sequence (only use if you don’t
specify by)

The seq() function has two new arguments by and length.out. If
you use the by argument, the sequence will be in steps of the input to
the by argument:

seq(from = 1, to = 10, by = 1)

[1] 1 2 3 4 5 6 7 8 9 10

seq(from = 0, to = 100, by = 10)

[1] 0 10 20 30 40 50 60 70 80 90 100

If you use the length.out argument, the sequence will have length
equal to the input of length.out.

seq(from = 0, to = 100, length.out = 11)

[1] 0 10 20 30 40 50 60 70 80 90 100

seq(from = 0, to = 100, length.out = 5)

[1] 0 25 50 75 100

46 yarrr! the pirate’s guide to r

rep()

Figure 22: Not a good depiction of a rep
in R.

The rep() function allows you to repeat a scalar (or vector) a speci-
fied number of times, or to a desired length.

rep(x, times, each)

x

A scalar or vector of values to repeat

times

The number of times to repeat the sequence

each

The number of times to repeat each value within the sequence

length.out (optional)

The desired length of the final sequence

Let’s do some reps.

rep(x = 3, times = 10)

[1] 3 3 3 3 3 3 3 3 3 3

rep(x = c(1, 2), times = 5)

[1] 1 2 1 2 1 2 1 2 1 2

rep(x = c("a", "b"), each = 2)

[1] "a" "a" "b" "b"

rep(x = 1:3, length.out = 10)

[1] 1 2 3 1 2 3 1 2 3 1

rep(x = 1:5, times = 3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

As you can see in the fourth example above, you can can include
an a:b call within a rep()!

You can even combine the times and each arguments within a
single rep() function. For example, here’s how to create the sequence
1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3 with one call to rep():

3: creating scalars and vectors 47

rep(x = 1:3, each = 2, times = 2)

[1] 1 1 2 2 3 3 1 1 2 2 3 3

Assigning jobs to a new crew

Let’s say you are are getting a batch of 10 new pirates on your crew,
and you need to assign each of them to one of three jobs. To help you,
you could use a vector with the numbers 1, 2, 3, 1, 2, 3, etc. As they
board the ship, you’ll just read off the next job to each pirate. Let’s
create this vector using rep()

pirate.jobs.num <- rep(x = 1:3,

length.out = 10)

pirate.jobs.num

[1] 1 2 3 1 2 3 1 2 3 1

Ok that’s helpful, but it would be nice if the jobs were in text
instead of numbers. Let’s repeat the previous example, but instead
of using the numbers 1, 2, 3, we’ll use the names of the actual jobs
(which are Deck Swabber, Parrot Groomer, and App Developer)

pirate.jobs.char <- rep(x = c("Deck Swabber", "Parrot Groomer", "App Developer"),

length.out = 10)

pirate.jobs.char

[1] "Deck Swabber" "Parrot Groomer" "App Developer" "Deck Swabber"

[5] "Parrot Groomer" "App Developer" "Deck Swabber" "Parrot Groomer"

[9] "App Developer" "Deck Swabber"

Generating random data

Because R is a language built for statistics, it contains many func-
tions that allow you generate random data – either from a vector
of data that you specify (like Heads or Tails from a coin), or from
an established probability distribution, like the Normal or Uniform
distribution.

In the next section we’ll go over the standard sample() function for
drawing random values from a vector. We’ll then cover some of the
most commonly used probability distributions: Normal and Uniform.

48 yarrr! the pirate’s guide to r

Sampling from a set of values: sample()

The sample() function allows you to draw random samples of ele-
ments (scalars) from a vector. For example, if you want to simulate
the 100 flips of a fair coin, you can tell the sample function to sam-
ple 100 values from the vector ["Heads", "Tails"]. Or, if you need to
randomly assign people to either a "Control" or "Test" condition in
an experiment, you can randomly sample values from the vector
["Control", "Test"]:

sample()

x

A vector of outcomes you want to sample from. For example, to
simulate coin flips, you’d enter x = c("Heads", "Tails")

size

The number of samples you want to draw. The default is the
length of x.

replace

Should sampling be done with replacement? If FALSE (the default
value), then each outcome in x can only be drawn once. If TRUE,
then each outcome in x can be drawn multiple times.

prob

A vector of probabilities of the same length as x indicating how
likely each outcome in "x" is. The vector of probabilities you give
as an argument should add up to one. If you don’t specify the
prob argument, all outcomes will be equally likely.

Let’s use sample() to draw 10 samples from a vector of integers
from 1 to 10.

If you don’t include any additional
arguments (like we did above), R
will assume that you want to draw
without replacement, and that you
want to select all elements (i.e.; size
= length(x)), and that all elements
are equally likely to be selected. For
example, the following two code
chunks are the same:

sample(x = 1:10)

is the same as

sample(x = 1:10,
prob = rep(.1, 10),
size = 10,
replace = FALSE)

Draw a random sample from the integers 1:10

sample(x = 1:10)

[1] 1 9 4 6 10 7 5 3 8 2

To change the size of the sample, use the size argument:

Draw 5 samples from the integers 1:10

sample(x = 1:10, size = 5)

3: creating scalars and vectors 49

[1] 4 3 5 9 2

If you don’t specify the replace argument, R will assume that you
are sampling without replacement. In other words, each element can
only be sampled once. If you want to sample with replacement, use
the replace = TRUE argument: Think about replacement like draw-

ing balls from a bag. Sampling with
replacement (replace = TRUE) means
that each time you draw a ball, you
return the ball back into the bag before
drawing another ball. Sampling without
replacement (replace = FALSE) means
that after you draw a ball, you remove
that ball from the bag so you can never
draw it again.

Draw 30 samples from the integers 1:5 with replacement

sample(x = 1:5, size = 10, replace = TRUE)

[1] 1 3 4 4 5 4 1 3 2 3

If you try to draw a large sample from
a vector without replacement, R will
return an error because it runs out of
things to draw:

You CAN'T draw 10 samples without replacement from
a vector with length 5
sample(x = 1:5, size = 10)

Error in sample.int(length(x),
size, replace, prob): cannot take a
sample larger than the population
when ’replace = FALSE’

To fix this, just tell R that you want to
sample with replacement:

You CAN draw 10 samples with replacement from a
vector of length 5
sample(x = 1:5, size = 10, replace = TRUE)

[1] 3 1 3 5 1 4 5 1 2 4

To specify how likely each element in the vector x should be
selected, use the prob argument. The length of the prob argument
should be as long as the x argument. For example, let’s draw 10

samples (with replacement) from the vector ["a", "b"], but we’ll
make the probability of selecting "a" to be .90, and the probability of
selecting "b" to be .10

Draw 10 samples with replacement from the vector ["a", "b"],

and make "a" much more likely to be sampled than "b"

sample(x = c("a", "b"),

prob = c(.9, .1),

size = 10,

replace = TRUE)

[1] "b" "a" "a" "a" "a" "b" "a" "a" "a" "a"

Simulating flips of a coin

Let’s simulate 10 flips of a fair coin, were the probably of getting
either a Head or Tail is .50. Because all values are equally likely, we
don’t need to specify the prob argument

sample(x = c("H", "T"), # The possible values of the coin

size = 10, # 10 flips

replace = TRUE) # Sampling with replacement

[1] "T" "T" "H" "H" "H" "H" "H" "T" "T" "T"

Now let’s change it by simulating flips of a biased coin, where the
probability of Heads is 0.8, and the probability of Tails is 0.2. Because
the probabilities of each outcome are no longer equal, we’ll need to
specify them with the prob argument:

50 yarrr! the pirate’s guide to r

sample(x = c("H", "T"),

prob = c(.8, .2), # Make the coin biased for Heads

size = 10,

replace = TRUE)

[1] "H" "H" "T" "T" "T" "H" "H" "H" "H" "H"

As you can see, our function returned a vector of 10 values corre-
sponding to our sample size of 10. Keep in mind that, just like using
rnorm() and runif(), the sample() function can give you different
outcomes every time you run it.

par(mar = c(3, 3, 3, 3))
plot(1, xlim = c(0, 1), ylim = c(0, 1),

xlab = "", ylab = "", xaxt = "n",
yaxt = "n", type = "n",
main = "Chest of 20 Gold, 30 Silver,\nand 50 Bronze Coins")

points(runif(100, .1, .9),
runif(100, .1, .9),
pch = 21, cex = 3,
bg = c(rep("gold", 20),

rep("gray94", 30),
rep("chocolate", 50))

)

Chest of 20 Gold, 30 Silver,
and 50 Bronze Coins

Drawing coins from a treasure chest

Now, let’s sample drawing coins from a treasure chest Let’s say the
chest has 100 coins: 20 gold, 30 silver, and 50 bronze. Let’s draw 10

random coins from this chest.

Create chest with the 100 coins

chest <- c(rep("gold", 20),

rep("silver", 30),

rep("bronze", 50))

Draw 10 coins from the chest

sample(x = chest,

size = 10)

[1] "bronze" "silver" "gold" "bronze" "bronze" "bronze" "bronze"

[8] "silver" "silver" "silver"

The output of the sample() function above is a vector of 10 strings
indicating the type of coin we drew on each sample. And like any
random sampling function, this code will likely give you different
results every time you run it! See how long it takes you to get 10 gold
coins...

3: creating scalars and vectors 51

Probability Distributions

In this section, we’ll cover how to generate random data from speci-
fied probability distributions. What is a probability distribution? Well,
it’s simply an equation – also called a likelihood function – that
indicates how likely certain numerical values are to be drawn.

We can use probability distributions to represent different types
of data. For example, imagine you need to hire a new group of
pirates for your crew. You have the option of hiring people form
one of two different pirate training colleges that produce pirates
of varying quality. One college “Pirate Training Unlimited" might
tend to pirates that are generally ok - never great but never terrible.
While another college “Unlimited Pirate Training" might produce
pirates with a wide variety of quality, from very low to very high.
In Figure 23 I plotted 5 example pirates from each college, where
each pirate is shown as a ball with a number written on it. As you
can see, pirates from PTU all tend to be clustered between 40 and
60 (not terrible but not great), while pirates from UPT are all over
the map, from 0 to 100. We can use probability distributions (in this
case, the uniform distribution) to mathematically define how likely
any possible value is to be drawn at random from a distribution. We
could describe Pirate Training Unlimited with a uniform distribution
with a small range, and Unlimited Pirate Training with a second
uniform distribution with a wide range.

Create blank plot
plot(1, xlim = c(0, 100), ylim = c(0, 100),

xlab = "Pirate Quality", ylab = "", type = "n",
main = "Two different Pirate colleges", yaxt = "n")

Set colors
col.vec <- yarrr::piratepal(palette = "nemo")

text(50, 90, "Pirate Training Unlimited", font = 3)
ptu <- runif(n = 5, min = 40, max = 60)
points(ptu, rep(75, 5), pch = 21, bg = col.vec[1], cex = 3)
text(ptu, rep(75, 5), round(ptu, 0))
segments(40, 65, 60, 65, col = col.vec[1], lwd = 4)

text(50, 40, "Unlimited Pirate Training", font = 3)
upt <- runif(n = 5, min = 10, max = 90)
points(upt, rep(25, 5), pch = 21, bg = col.vec[2], cex = 3)
text(upt, rep(25, 5), round(upt, 0))
segments(10, 15, 90, 15, col = col.vec[2], lwd = 4)

0 20 40 60 80 100

Two different Pirate colleges

Pirate Quality

Pirate Training Unlimited

5759535945

Unlimited Pirate Training

878214 8624

Figure 23: Sampling 5 potential pirates
from two different pirate colleges.
Pirate Training Unlimited (PTU)
consistently produces average pirates
(with scores between 40 and 60), while
Unlimited Pirate Training (UPT),
produces a wide range of pirates from 0

to 100.

In the next two sections, I’ll cover the two most common distribu-
tions: The Normal and the Uniform. However, R contains many more
distributions than just these two. To see them all, look at the help
menu for Distributions:

See all distributions included in Base R

?Distributions

52 yarrr! the pirate’s guide to r

The Normal (Gaussian) distribution

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Three Normal Distributions

x

dn
or

m
(x

)

µ = 0, σ = 1
µ = − 2, σ = 0.5
µ = 1, σ = 2

Figure 24: Three different normal
distributions with different means and
standard deviations. The code below
generated this figure:

Create blank plot
plot(1, xlim = c(-5, 5), ylim = c(0, 1),

xlab = "x", ylab = "dnorm(x)", type = "n",
main = "Three Normal Distributions", bty = "n")

Create density functions
f1 <- function(x) {dnorm(x, mean = 0, sd = 1)}
f2 <- function(x) {dnorm(x, mean = -2, sd = .5)}
f3 <- function(x) {dnorm(x, mean = 1, sd = 2)}

Set colors
col.vec <- yarrr::piratepal("southpark")

Add curves
curve(f1, from = -5, to = 5, add = TRUE, col = col.vec[1], lwd = 3)
curve(f2, from = -5, to = 5, add = TRUE, col = col.vec[2], lwd = 3)
curve(f3, from = -5, to = 5, add = TRUE, col = col.vec[3], lwd = 3)

Add Legend
legend(x = 0, y = 1,

legend = c(expression(paste(mu == 0, ", ", sigma == 1)),
expression(paste(mu == -2, ", ", sigma == .5)),
expression(paste(mu == 1, ", ", sigma == 2))),

lwd = rep(3, 3),
col = col.vec[1:3],
bty = "n")

The Normal (a.k.a "Gaussian") distribution is probably the most
important distribution in all of statistics. The Normal distribution
is bell-shaped, and has two parameters: a mean and a standard
deviation. To generate samples from a normal distribution in R, we
use the function rnorm():

rnorm(n, mean, sd)

n

The number of observations to draw from the distribution.

mean

The mean of the distribution.

sd

The standard deviation of the distribution.

5 samples from a Normal dist with mean = 0, sd = 1

rnorm(n = 5, mean = 0, sd = 1)

3: creating scalars and vectors 53

[1] 0.3221 -0.8885 0.7783 0.0447 0.3694

3 samples from a Normal dist with mean = -10, sd = 15

rnorm(n = 3, mean = -10, sd = 15)

[1] -41.36 -1.33 22.18

Again, because the sampling is done randomly, you’ll get dif-
ferent values each time you run the rnorm() (or any other random
sampling) function.

54 yarrr! the pirate’s guide to r

The Uniform distribution

−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

3 Uniform Distributions

x

D
en

si
ty

Min = −1, Max = +1
Min = −4, Max = −3
Min = −2, Max = +4

Figure 25: The Uniform distribution
- known colloquially as the Anthony
Davis distribution.

Next, let’s move on to the Uniform distribution. The Uniform dis-
tribution gives equal probability to all values between its minimum
and maximum values. In other words, everything between its lower
and upper bounds are equally likely to occur.

plot(1, xlim = c(-5, 5), ylim = c(0, 1.25),
main = "3 Uniform Distributions",
xlab = "x", ylab = "Density", type = "n", bty = "n")

f1 <- function(x) {dunif(x, min = -1, max = 1)}
f2 <- function(x) {dunif(x, min = -4, max = -3)}
f3 <- function(x) {dunif(x, min = -2, max = 4)}

col.vec <- yarrr::piratepal("google")

curve(f1, from = -1, to = 1, add = TRUE, col = col.vec[1], lwd = 3)
segments(c(-1, 1), c(0, 0), c(-1, 1), c(f1(-1), f1(1)), lty = 2, col = col.vec[1])
curve(f2, from = -4, to = -3, add = TRUE, col = col.vec[2], lwd = 3)
segments(c(-4, -3), c(0, 0), c(-4, -3), c(f2(-4), f2(-3)), lty = 2, col = col.vec[2])
curve(f3, from = -2, to = 4, add = TRUE, col = col.vec[3], lwd = 3)
segments(c(-2, 4), c(0, 0), c(-2, 4), c(f3(-2), f3(4)), lty = 2, col = col.vec[3])

Add Legend
legend(x = -2, y = 1.2,

legend = c("Min = -1, Max = +1",
"Min = -4, Max = -3",
"Min = -2, Max = +4"),

lwd = rep(3, 3),
col = col.vec[1:3],
bty = "n")

Figure 26: The Uniform distribution
- known colloquially as the Anthony
Davis distribution.

To generate samples from a uniform distribution,use the function
runif(), the function has 3 arguments:

runif(n, min, max)

n

The number of observations (i.e.; samples)

min

The lower bound of the Uniform distribution from which samples
are drawn

max

The upper bound of the Uniform distribution from which samples
are drawn

3: creating scalars and vectors 55

Here are some samples from two different Uniform distributions:

5 samples from Uniform dist with bounds at 0 and 1

runif(n = 5, min = 0, max = 1)

[1] 0.7151 0.0628 0.5839 0.4850 0.1524

10 samples from Uniform dist with bounds at -100 and +100

runif(n = 10, min = -100, max = 100)

[1] -83.5 -16.7 46.1 -92.9 28.0 36.8 65.3 -14.6 90.6 47.5

Drawing samples from probability distributions will produce different re-
sults!

Every time you draw a sample from a probability distribution, you’ll
(likely) get a different result. For example, see what happens when I
run the following two commands (you’ll learn the rnorm() function
on the next page...)

Draw a sample of size 5 from a normal distribution with mean 100 and sd 10

rnorm(n = 5, mean = 100, sd = 10)

[1] 91.6 95.3 106.7 109.6 116.1

Do it again!

rnorm(n = 5, mean = 100, sd = 10)

[1] 91.2 103.9 90.8 123.3 94.6

As you can see, the exact same code produced different results
– and that’s exactly what we want! Each time you run rnorm(), or
another distribution function, you’ll get a new random sample.

Controlling random samples with set.seed()

There will be cases where you will want to exert some control over
the random samples that R produces from sampling functions.
For example, you may want to create a reproducible example of
some code that anyone else can replicate exactly. To do this, use
the set.seed() function. Using set.seed() will force R to produce
consistent random samples at any time on any computer.

In the code below I’ll set the sampling seed to 100 with set.seed(100).
I’ll then run rnorm() twice. The results will always be consistent (be-
cause we fixed the sampling seed).

56 yarrr! the pirate’s guide to r

Fix sampling seed to 100, so the next sampling functions

always produce the same values

set.seed(100)

The result will always be -0.5022, 0.1315, -0.0789

rnorm(3, mean = 0, sd = 1)

[1] -0.5022 0.1315 -0.0789

The result will always be 0.887, 0.117, 0.319

rnorm(3, mean = 0, sd = 1)

[1] 0.887 0.117 0.319

Try running the same code on your machine and you’ll see the
exact same samples that I got above. Oh and the value of 100 I used
above in set.seed(100) is totally arbitrary – you can set the seed to
any integer you want. I just happen to like how set.seed(100) looks
in my code.

Different seed values will (consistently)
produce different random samples:

Different sampling seeds will produce
different samples

Set seed to 5
set.seed(5)
rnorm(n = 3, mean = 0, sd = 1)

[1] -0.841 1.384 -1.255

Now set seed to 500
set.seed(500)
rnorm(n = 3, mean = 0, sd = 1)

[1] 0.968 1.965 0.886

3: creating scalars and vectors 57

Test your R might!

1. Create the vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] in three ways: once
using c(), once using a:b, and once using seq().

2. Create the vector [2.1, 4.1, 6.1, 8.1] in two ways, once using c() and
once using seq()

3. Create the vector [0, 5, 10, 15] in 3 ways: using c(), seq() with a by

argument, and seq() with a length.out argument.

4. Create the vector [101, 102, 103, 200, 205, 210, 1000, 1100, 1200]
using a combination of the c() and seq() functions

5. A new batch of 100 pirates are boarding your ship and need
new swords. You have 10 scimitars, 40 broadswords, and 50 cut-
lasses that you need to distribute evenly to the 100 pirates as they
board. Create a vector of length 100 where there is 1 scimitar, 4

broadswords, and 5 cutlasses in each group of 10. That is, in the
first 10 elements there should be exactly 1 scimitar, 4 broadswords
and 5 cutlasses. The next 10 elements should also have the same
number of each sword (and so on).

6. Create a vector that repeats the integers from 1 to 5, 100 times.
That is [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, ...]. The length of the vector should
be 500!

7. Now, create the same vector as before, but this time repeat 1, 100

times, then 2, 100 times, etc., That is [1, 1, 1, ..., 2, 2, 2, ..., ... 5, 5, 5].
The length of the vector should also be 500

8. Create a vector containing 50 samples from a Normal distribution
with a population mean of 20 and standard deviation of 2.

9. Create a vector containing 25 samples from a Uniform distribution
with a lower bound of -100 and an upper bound of -50.

4: Core vector functions

In this chapter, we’ll cover the core functions for vector objects. The
code below uses the functions you’ll learn to calculate summary
statistics from two exams.

10 students from two different classes took two exams.

Here are three vectors showing the data

midterm <- c(62, 68, 75, 79, 55, 62, 89, 76, 45, 67)

final <- c(78, 72, 97, 82, 60, 83, 92, 73, 50, 88)

How many students are there?

length(midterm)

Add 5 to each midterm score (extra credit!)

midterm <- midterm + 5

Difference between final and midterm scores

final - midterm

Each student's average score

(midterm + final) / 2

Mean midterm grade

mean(midterm)

Standard deviation of midterm grades

sd(midterm)

Highest final grade

max(final)

z-scores

midterm.z <- (midterm - mean(midterm)) / sd(midterm)

final.z <- (final - mean(final)) / sd(final)

60 yarrr! the pirate’s guide to r

length()

Figure 27: According to this article
published in 2015 in Plos One, when it
comes to people, length may matter for
some. But trust me, for vectors it always
does.

Vectors have one dimension: their length. Later on, when you com-
bine vectors into more higher dimensional objects, like matrices and
dataframes, you will need to make sure that all the vectors you com-
bine have the same length. But, when you want to know the length of
a vector, don’t stare at your computer screen and count the elements
one by one! (That said, I must admit that I still do this sometimes...).
Instead, use length() function. The length() function takes a vector
as an argument, and returns a scalar representing the number of
elements in the vector:

a <- 1:10

length(a)

[1] 10

b <- seq(from = 1, to = 100, length.out = 20)

length(b)

[1] 20

length(c("This", "character", "vector", "has", "six", "elements."))

[1] 6

length("This character scalar has just one element.")

[1] 1

Get used to the length() function people, you’ll be using it a lot!

Arithmetic operations on vectors

So far, you know how to do basic arithmetic operations like + (addi-
tion), - (subtraction), and * (multiplication) on scalars. Thankfully, R
makes it just as easy to do arithmetic operations on numeric vectors:

a <- c(1, 2, 3, 4, 5)

b <- c(10, 20, 30, 40, 50)

a + 100

[1] 101 102 103 104 105

a + b

[1] 11 22 33 44 55

4: core vector functions 61

(a + b) / 10

[1] 1.1 2.2 3.3 4.4 5.5

If you do an operation on a vector with a scalar, R will apply the
scalar to each element in the vector. For example, if you have a vector
and want to add 10 to each element in the vector, just add the vector
and scalar objects. Let’s create a vector with the integers from 1 to 10,
and add then add 100 to each element:

Take the integers from 1 to 10, then add 100 to each

1:10 + 100

[1] 101 102 103 104 105 106 107 108 109 110

As you can see, the result is [1 + 100, 2 + 100, ... 10 + 100]. Of
course, we could have made this vector with the a:b function like
this: 101:110, but you get the idea.

Of course, this doesn’t only work with addition...oh no. Let’s try
division, multiplication, and exponents. Let’s create a vector a with
the integers from 1 to 10 and then change it up:

a <- 1:10

a / 100

[1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

a ^ 2

[1] 1 4 9 16 25 36 49 64 81 100

Again, if you perform an algebraic operation on a vector with a
scalar, R will just apply the operation to every element in the vector.

Basic math with multiple vectors

What if you want to do some operation on two vectors of the same
length? Easy. Just apply the operation to both vectors. R will then
combine them element–by–element. For example, if you add the
vector [1, 2, 3, 4, 5] to the vector [5, 4, 3, 2, 1], the resulting vector will
have the values [1 + 5, 2 + 4, 3 + 3, 4 + 2, 5 + 1] = [6, 6, 6, 6, 6]:

c(1, 2, 3, 4, 5) + c(5, 4, 3, 2, 1)

[1] 6 6 6 6 6

Let’s create two vectors a and b where each vector contains the
integers from 1 to 5. We’ll then create two new vectors ab.sum, the

62 yarrr! the pirate’s guide to r

sum of the two vectors and ab.diff, the difference of the two vectors,
and ab.prod, the product of the two vectors:

a <- 1:5

b <- 1:5

ab.sum <- a + b

ab.diff <- a - b

ab.prod <- a * b

ab.sum

[1] 2 4 6 8 10

ab.diff

[1] 0 0 0 0 0

ab.prod

[1] 1 4 9 16 25

Pirate Bake Sale

Let’s say you had a bake sale on your ship where 5 pirates sold both
pies and cookies. You could record the total number of pies and
cookies sold in two vectors:

pies <- c(3, 6, 2, 10, 4)

cookies <- c(70, 40, 40, 200, 60)

Now, let’s say you want to know how many total items each pirate
sold. You can do this by just adding the two vectors:

total.sold <- pies + cookies

total.sold

[1] 73 46 42 210 64

Summary statistic functions for numeric vectors

Ok, now that we can create vectors, let’s learn the basic descriptive
statistics functions. We’ll start with functions that apply to both
continuous and discrete data.17 Each of the following functions takes 17 Continuous data is data that, gener-

ally speaking, can take on an infinite
number of values. Height and weight
are good examples of continuous data.
Discrete data are those that can only
take on a finite number of values. The
number of pirates on a ship, or the
number of times a monkey farts in a
day are great examples of discrete data

a numeric vector as an argument, and returns either a scalar (or in
the case of summary(), a table) as a result.

4: core vector functions 63

Statistical functions for numeric vectors

sum(x), product(x)

The sum, or product, of a numeric vector x.

min(x), max(x)

The minimum and maximum values of a vector x

mean(x)

The arithmetic mean of a numeric vector x

median(x)

The median of a numeric vector x. 50% of the data should be less
than median(x) and 50% should be greater than median(x).

sd(x), var(x)

The standard deviation and variance of a numeric vector x.

quantile(x, p)

The pth sample quantile of a numeric vector x. For example,
quantile(x, .2) will tell you the value at which 20% of cases are
less than x. The function quantile(x, .5) is identical to median(x)

summary(x)

Shows you several descriptive statistics of a vector x, including
min(x), max(x), median(x), mean(x)

Let’s calculate some descriptive statistics from some pirate related
data. I’ll create a vector called data that contains the number of
tattoos from 10 random pirates.

tattoos <- c(4, 50, 2, 39, 4, 20, 4, 8, 10, 100)

Now, we can calculate several descriptive statistics on this vector
by using the summary statistics functions:

min(tattoos)

[1] 2

max(tattoos)

[1] 100

mean(tattoos)

64 yarrr! the pirate’s guide to r

[1] 24.1

median(tattoos)

[1] 9

sd(tattoos)

[1] 31.3

Watch out for missing (NA) values!

In R, missing data are coded as NA. In real datasets, NA values turn
up all the time. Unfortunately, most descriptive statistics functions
will freak out if there is a missing (NA) value in the data. For exam-
ple, the following code will return NA as a result because there is an
NA value in the data vector: Important!!! Include the argument

na.rm = T to ignore missing (NA)
values when calculating a descriptive
statistic.

a <- c(1, 5, NA, 2, 10)

mean(a)

[1] NA

Thankfully, there’s a way we can work around this. To tell a de-
scriptive statistic function to ignore missing (NA) values, include
the argument na.rm = T in the function. This argument explicitly
tells the function to ignore NA values. Let’s try calculating the mean
of the vector a again, this time with the additional na.rm = TRUE

argument:

mean(a, na.rm = TRUE)

[1] 4.5

Now, the function ignored the NA value and returned the mean
of the remaining data. While this may seem trivial now (why did we
include an NA value in the vector if we wanted to ignore it?!), it will
be become very important when we apply the function to real data
which, very often, contains missing values.

If you want to get many summary statistics from a vector, you can
use the summary() function which gives you several key statistics:

summary(tattoos)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.0 4.0 9.0 24.1 34.2 100.0

4: core vector functions 65

Sample statistics from random samples

Now that you know how to calculate summary statistics, let’s take a
closer look at how R draws random samples using the rnorm() and
runif() functions. In the next code chunk, I’ll calculate some sum-
mary statistics from a vector of 5 values from a Normal distribution
with a mean of 10 and a standard deviation of 5. I’ll then calculate
summary statistics from this sample using mean() and sd():

5 samples from a Normal dist with mean = 10 and sd = 5

x <- rnorm(n = 5, mean = 10, sd = 5)

What are the mean and standard deviation of the sample?

mean(x)

[1] 10.6

sd(x)

[1] 2.52

As you can see, the mean and standard deviation of our sample
vector are close to the population values of 10 and 5 – but they aren’t
exactly the same because these are sample data. If we take a much
larger sample (say, 100,000), the sample statistics should get much
closer to the population values:

100,000 samples from a Normal dist with mean = 10, sd = 5

y <- rnorm(n = 100000, mean = 10, sd = 5)

mean(y)

[1] 10

sd(y)

[1] 5

Yep, sure enough our new sample y (containing 100,000 values)
has a sample mean and standard deviation much closer (almost
identical) to the population values than our sample x (containing
only 5 values). This is an example of what is called the law of large
numbers. Google it.

Counting functions for discrete and non-numeric data

Next, we’ll move on to common counting functions for vectors with
discrete or non-numeric data. Again, discrete data are those like

66 yarrr! the pirate’s guide to r

gender, occupation, and monkey farts, that only allow for a finite (or
at least, plausibly finite) set of responses. Each of these vectors takes
a vector as an argument – however, unlike the previous functions we
looked at, the vectors can be either numeric or character.

Counting functions for discrete data

unique(x)

Returns a vector of all unique values in the vector x.

table(x)

Returns a table showing all the unique values in the vector x as
well as a count of each occurrence. By default, the table() func-
tion does NOT count NA values. To include a count of NA values,
include the argument exclude = NULL

Let’s test these functions by starting with two vectors of discrete
data:

vec <- c(1, 1, 1, 5, 1, 1, 10, 10, 10)

gender <- c("M", "M", "F", "F", "F", "M", "F", "M", "F")

The function unique(x) will tell you all the unique values in the
vector, but won’t tell you anything about how often each value
occurs.

unique(vec)

[1] 1 5 10

unique(gender)

[1] "M" "F"

The function table() does the same thing as unique(), but goes
a step further in telling you how often each of the unique values
occurs:

table(vec)

vec

1 5 10

5 1 3

4: core vector functions 67

table(gender)

gender

F M

5 4

If you want to get a table of percentages instead of counts, you can
just divide the result of the table() function by the sum of the result:

table(vec) / sum(table(vec))

vec

1 5 10

0.556 0.111 0.333

table(gender) / sum(table(gender))

gender

F M

0.556 0.444

Standardization (z-score)

A common task in statistics is to standardize variables – also known
as calculating z-scores. The purpose of standardizing a vector is to
put it on a common scale which allows you to compare it to other
(standardized) variables. To standardize a vector, you simply subtract
the vector by its mean, and then divide the result by the vector’s
standard deviation.

If the concept of z-scores is new to you – don’t worry. In the next
worked example, you’ll see how it can help you compare two sets
of data. But for now, let’s see how easy it is to standardize a vector
using basic arithmetic.

Let’s say you have a vector a containing some data. We’ll assign
the vector to a new object called a then calculate the mean and stan-
dard deviation with the mean() and sd() functions:

a <- c(5, 3, 7, 5, 5, 3, 4)

mean(a)

[1] 4.57

sd(a)

[1] 1.4

68 yarrr! the pirate’s guide to r

Ok. Now we’ll create a new vector called a.z which is a standard-
ized version of a. To do this, we’ll simply subtract the mean of the
vector, then divide by the standard deviation.

a.z <- (a - mean(a)) / sd(a)

The mean of a.z should now be 0, and the standard deviation of
a.z should now be 1. Let’s make sure:

mean(a.z)

[1] 1.98e-16

sd(a.z)

[1] 1

Sweet.18 18 Oh, don’t worry that the mean of a.z
doesn’t look like exactly zero. Using
non-scientific notation, the result is
0.000000000000000198. For all intents
and purposes, that’s 0. The reason
the result is not exactly 0 is due to
computer science theoretical reasons
that I cannot explain (because I don’t
understand them)

Additional numeric vector functions

Here are some other functions that you will find useful when manag-
ing numeric vectors:

Additional numeric vector functions

round(x, digits)

Round values in a vector (or scalar) x to a certain number of digits.

ceiling(x), floor(x)

Round a number to the next largest integer with ceiling(x) or
down to the next lowest integer with floor(x).

x %% y

Modular arithmetic (i.e.; x mod y). You can interpret x %% y as
“What is the remainder after dividing x by y?" For example, 10 %%

3 equals 1 because 3 times 3 is 9 (which leaves a remainder of 1).

A worked example: Evaluating a competition

Your gluten-intolerant first mate just perished in a tragic soy sauce
incident and it’s time to promote another member of your crew to the
newly vacated position. Of course, only two qualities really matter

4: core vector functions 69

for a pirate: rope-climbing, and grogg drinking. Therefore, to see
which of your crew deserves the promotion, you decide to hold a
climbing and drinking competition. In the climbing competition, you
measure how many feet of rope a pirate can climb in an hour. In the
drinking competition, you measure how many mugs of grogg they
can drink in a minute. Five pirates volunteer for the competition –
here are their results:

grogg <- c(12, 8, 1, 6, 2)

climbing <- c(100, 520, 430, 200, 700)

Now you’ve got the data, but there’s a problem: the scales of the
numbers are very different. While the grogg numbers range from 1 to
12, the climbing numbers have a much larger range from 100 to 700.
This makes it difficult to compare the two sets of numbers directly.

To solve this problem, we’ll use standardization. Let’s create new
standardized vectors called grogg.z and climbing.z

grogg.z <- (grogg - mean(grogg)) / sd(grogg)

climbing.z <- (climbing - mean(climbing)) / sd(climbing)

Now let’s look at the final results. To make them easier to read, I’ll
round them to 2 digits:

round(grogg.z, 2)

[1] 1.38 0.49 -1.07 0.04 -0.85

round(climbing.z, 2)

[1] -1.20 0.54 0.17 -0.78 1.28

It looks like there were two outstanding performances in particular.
In the grogg drinking competition, the first pirate had a z-score of
1.4. We can interpret this by saying that this pirate drank 1.4 more
standard deviations of mugs of grogg than the average pirate. In the
climbing competition, the fifth pirate had a z-score of 1.3. Here, we
would conclude that this pirate climbed 1.3 standard deviations more
than the average pirate.

But which pirate was the best on average across both events? To
answer this, let’s create a combined z-score for each pirate which
calculates the average z-scores for each pirate across the two events.
We’ll do this by adding two performances and dividing by two. This
will tell us, how good, on average, each pirate did relative to her
fellow pirates.

70 yarrr! the pirate’s guide to r

average.z <- (grogg.z + (climbing.z)) / 2

Let’s look at the result:

round(average.z, 1)

[1] 0.1 0.5 -0.5 -0.4 0.2

The highest average z-score belongs to the second pirate who had
an average z-score value of 0.5. The first and last pirates, who did
well in one event, seemed to have done poorly in the other event.

Moral of the story: promote the pirate who can drink and climb.

4: core vector functions 71

Test your R Might!

1. Create a vector that shows the square root of the integers from 1 to
10.

2. Renata thinks that she finds more treasure when she’s had a mug
of grogg than when she doesn’t. To test this, she recorded how
much treasure she found over 7 days without drinking any grogg,
and then did the same over 7 days while drinking grogg. Here are
her results:

grogg <- c(2, 0, 3, 1, 0, 3, 5)

nogrogg <- c(0, 0, 1, 0, 1, 2, 2)

How much treasure did Renata find on average when drinking
grogg? What about when she did not drink grogg?

3. Using Renata’s data again, create a new vector called difference

that shows how much more treasure Renata found while drinking
grogg than when she didn’t drink grogg. What was the mean,
median, and standard deviation of the difference?

4. There’s an old parable that goes something like this. A man does
some work for a king and needs to be paid. Because the man
loves rice (who doesn’t?!), the man offers the king two different
ways that he can be paid. ‘You can either pay me 1000 bushels of
rice, or, you can pay me as follows: get a chessboard and put one
grain of rice in the top left square. Then put 2 grains of rice on
the next square, followed by 4 grains on the next, 8 grains on the
next...and so on, where the amount of rice doubles on each square,
until you get to the last square. When you are finished, give me
all the grains of rice that would (in theory), fit on the chessboard.’
The king, sensing that the man was an idiot for making such a
stupid offer, immediately accepts the second option. He summons
a chessboard, and begins counting out grains of rice one by one...

Assuming that there are 64 squares on a chessboard, calculate how
many grains of rice the main will receive19. 19 Hint: If you have trouble coming up

with the answer, imagine how many
grains are on the first, second, third and
fourth squares, then try to create the
vector that shows the number of grains
on each square. Once you come up with
that vector, you can easily calculate the
final answer with the sum() function.

5: Indexing vectors with []

Indexing with brackets [] is the most basic way of selecting data
based on some criteria. In the following code chunk, I’ll use indexing
to slice and dice vectors representing data from a boat sale:

Boat sale. Creating the data vectors

boat.names <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")

boat.colors <- c("black", "green", "pink", "blue", "blue",

"green", "green", "yellow", "black", "black")

boat.ages <- c(143, 53, 356, 23, 647, 24, 532, 43, 66, 86)

boat.prices <- c(53, 87, 54, 66, 264, 32, 532, 58, 99, 132)

What was the price of the first boat?

boat.prices[1]

What were the ages of the first 5 boats?

boat.ages[1:5]

What were the names of the black boats?

boat.names[boat.colors == "black"]

What were the prices of either green or yellow boats?

boat.prices[boat.colors == "green" | boat.color == "yellow"]

Change the price of boat "s" to 100

boat.prices[boat.names == "s"] <- 100

What was the median price of black boats less than 100 years old?

median(boat.prices[boat.colors == "black" & boat.ages < 100])

How many pink boats were there?

sum(boat.colors == "pink")

What percent of boats were older than 100 years old?

mean(boat.ages < 100)

74 yarrr! the pirate’s guide to r

By now you should be a whiz at applying functions like mean()

and table() to vectors. However, in many analyses, you won’t want
to calculate statistics of an entire vector. Instead, you will want to
access specific subsets of values of a vector based on some criteria.
For example, you may want to access values in a specific location
in the vector (i.e.; the first 10 elements) or based on some criteria
within that vector (i.e.; all values greater than 0), or based on criterion
from values in a different vector (e.g.; All values of age where sex is
Female). To access specific values of a vector in R, we use indexing
using brackets [].

Figure 28: Traditionally, a pirate will
steal a Beard Bauble from every pirate
he beats in a game of Mario Kart. This
pirate is is the Mario Kart champion of
Missionsstrasse.

To show you where we’re going with this, consider the following
vectors representing data from a sale of boats:

boat.names <- c("a", "b", "c", "d", "e")

boat.colors <- c("black", "green", "pink", "blue", "blue")

boat.ages <- c(143, 53, 356, 23, 647)

boat.prices <- c(53, 87, 54, 66, 264)

Let’s use indexing to access specific data from these vectors

Indexing vectors with brackets
a[]

To index a vector, we use brackets [] after the vector object. In gen-
eral, whatever you put inside the brackets, tells R which values of the
vector object you want. There are two main ways that you can use
indexing to access subsets of data in a vector: numerical and logical
indexing.

Numerical Indexing

With numerical indexing, you enter a vector of integers corre-
sponding to the values in the vector you want to access in the form
a[index], where a is the vector, and index is a vector of index values.
For example, let’s use numerical indexing to get values from our boat
vectors.

What is the first boat name?

boat.names[1]

[1] "a"

What are the first five boat colors?

boat.colors[1:5]

[1] "black" "green" "pink" "blue" "blue"

5: indexing vectors with [] 75

What is every second boat age?

boat.ages[seq(1, 5, by = 2)]

[1] 143 356 647

You can use any indexing vector as long as it contains integers.
You can even access the same elements multiple times:

What is the first boat age (3 times)

boat.ages[c(1, 1, 1)]

[1] 143 143 143

It it makes your code clearer, you can define an indexing object
before doing your actual indexing. For example, let’s define an object
called my.index and use this object to index our data vector:

my.index <- 3:5

boat.names[my.index]

[1] "c" "d" "e"

Logical Indexing

Figure 29: Logical indexing. Good for R
aliens and R pirates.

The second way to index vectors is with logical vectors. A logical
vector is a vector that only contains TRUE and FALSE values. In R,
true values are designated with TRUE, and false values with FALSE.
When you index a vector with a logical vector, R will return values
of the vector for which the indexing vector is TRUE. If that was
confusing, think about it this way: a logical vector, combined with
the brackets [], acts as a filter for the vector it is indexing. It only
lets values of the vector pass through for which the logical vector is
TRUE.

You could create logical vectors directly using c(). For example, I
could access every other value of the following vector as follows:

a <- c(1, 2, 3, 4, 5)

a[c(TRUE, FALSE, TRUE, FALSE, TRUE)]

[1] 1 3 5

As you can see, R returns all values of the vector a for which the
logical vector is TRUE.

76 yarrr! the pirate’s guide to r

par(mar = rep(.1, 4))
plot(1, xlim = c(0, 1.1), ylim = c(0, 10),

xlab = "", ylab = "", xaxt = "n", yaxt = "n",
type = "n")

text(rep(0, 9), 9:1,
labels = c("==", "!=", "<", "<=",

">", ">=", "|", "!", "%in%"),
adj = 0, cex = 3)

text(rep(.2, 9), 9:1,
labels = c("equal", "not equal", "less than",

"less than or equal","greater than",
"greater than or equal", "or", "not", "in the set"),

adj = 0, cex = 3)

==
!=
<
<=
>
>=
|
!
%in%

equal
not equal
less than
less than or equal
greater than
greater than or equal
or
not
in the set

Figure 30: Comparison operators in R

However, creating logical vectors using c() is tedious. Instead, it’s
better to create logical vectors from existing vectors using comparison
operators like < (less than), == (equals to), and != (not equal to).
A complete list of the most common comparison operators is in
Figure 30. For example, let’s create some logical vectors from our
boat.ages vector:

Which ages are > 100?

boat.ages > 100

[1] TRUE FALSE TRUE FALSE TRUE

Which ages are equal to 23?

boat.ages == 23

[1] FALSE FALSE FALSE TRUE FALSE

boat.names == "c"

[1] FALSE FALSE TRUE FALSE FALSE

You can also create logical vectors by comparing a vector to an-
other vector of the same length. When you do this, R will compare
values in the same position (e.g.; the first values will be compared,
then the second values, etc.). For example, let’s say we had a vector
called boat.cost that indicates the cost of the 5 boats being sold. We
can then compare the boat.cost and boat.price vectors to see which

5: indexing vectors with [] 77

boats sold for a higher price than their cost:

boat.prices <- c(53, 87, 54, 66, 264)

boat.cost <- c(50, 70, 60, 80, 500)

Which boats had a higher price than cost?

boat.prices > boat.cost

[1] TRUE TRUE FALSE FALSE FALSE

Which boats had a lower price than cost?

boat.prices < boat.cost

[1] FALSE FALSE TRUE TRUE TRUE

Once you’ve created a logical vector using a comparison operator,
you can use it to index any vector with the same length. Here, I’ll use
logical vectors to get the prices of boats whose ages were greater than
100:

Here’s how logical indexing works step
by step:

Which boat prices are greater than 100?
boat.ages > 100

[1] TRUE FALSE TRUE FALSE TRUE

Writing the logical index by hand (you'd never do this!)
boat.prices[c(TRUE, FALSE, TRUE, FALSE, TRUE)]

[1] 53 54 264

Doing it all in one step! You get the same answer
boat.prices[boat.ages > 100]

[1] 53 54 264

What were the prices of boats older than 100?

boat.prices[boat.ages > 100]

[1] 53 54 264

Using & (AND), | (OR)

In addition to using single comparison operators, you can combine
multiple logical vectors using the OR (which looks like |) and AND &

commands. The OR | operation will return TRUE if any of the logical
vectors is TRUE, while the AND operation will only return TRUE
if all of the values in the logical vectors is TRUE. This is especially
powerful when you want to create a logical vector based on criteria
from multiple vectors.

For example, let’s create a logical vector indicating which boats
had a price greater than 200 OR less than 100, and then use that
vector to see what the names of these boats were:

Which boats had prices greater than 400 OR less than 100?

boat.prices > 200 | boat.prices < 100

[1] TRUE TRUE TRUE TRUE TRUE

What were the NAMES of these boats

boat.names[boat.prices > 200 | boat.prices < 100]

[1] "a" "b" "c" "d" "e"

78 yarrr! the pirate’s guide to r

You can combine as many logical vectors as you want (as long as
they all have the same length!):

Boat names of boats with a color of black OR with a price > 100

boat.names[boat.colors == "black" | boat.prices > 100]

[1] "a" "e"

Names of blue boats with a price greater than 200

boat.names[boat.colors == "blue" & boat.prices > 200]

[1] "e"

You can combine as many logical vec-
tors as you want to create increasingly
complex selection criteria. For example,
the following logical vector returns
TRUE for cases where the boat colors
are black OR brown, AND where the
price was not equal to 100:

Which boats were eithe black or brown, AND had a price less than 100?
(boat.colors == "black" | boat.colors == "brown") & boat.prices < 100

[1] TRUE FALSE FALSE FALSE FALSE

What were the names of these boats?
boat.names[(boat.colors == "black" | boat.colors == "brown") & boat.prices < 100]

[1] "a"

When using multiple criteria, make
sure to use parentheses when appropri-
ate. If I didn’t use parentheses above, I
would get a different answer.

Additional ways to create and use logical vectors

%in%

x %in% y

The %in% operation helps you to easily create multiple OR argu-
ments.Imagine you have a vector of categorical data that can take
on many different values. For example, you could have a vector x
indicating people’s favorite letters.

x <- c("a", "t", "a", "b", "z")

Now, let’s say you want to create a logical vector indicating which
values are either a or b or c or d. You could create this logical vector
with multiple | (OR) commands:

x == "a" | x == "b" | x == "c" | x == "d"

[1] TRUE FALSE TRUE TRUE FALSE

However, this takes a long time to write. Thankfully, the %in%
operation allows you to combine multiple OR comparisons much
faster. To use the %in% function, just put it in between the original
vector, and a new vector of possible values. The %in% function goes through every

value in the vector x, and returns TRUE
if it finds it in the vector of possible
values – otherwise it returns FALSE.

x %in% c("a", "b", "c", "d")

[1] TRUE FALSE TRUE TRUE FALSE

As you can see, the result is identical to our previous result.

Taking the sum and mean of logical vectors to get counts and per-
centages

Many (if not all) R functions will interpret TRUE values as 1 and
FALSE values as 0. This allows us to easily answer questions like

5: indexing vectors with [] 79

"How many values in a data vector are greater than 0?" or "What
percentage of values are equal to 5?" by applying the sum() or mean()

function to a logical vector.

You can take the sum and mean
of a logical vector to get counts and
percentages

x <- c(TRUE, TRUE, FALSE, TRUE)

How many TRUEs are there?
sum(x)

[1] 3

What percent of x are TRUE?
mean(x)

[1] 0.75

We’ll start with a vector x of length 10, containing 5 1s and 5 -1s.

x <- c(1, 1, 1, 1, 1, -1, -1, -1, -1, -1)

We can create a logical vector to see which values are greater than
0:

x > 0

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

Now, we’ll use sum() and mean() on that logical vector to see how
many of the values in x are positive, and what percent are positive.
We should find that there are 5 TRUE values, and that 50% of the
values (5 / 10) are TRUE.

sum(x > 0)

[1] 5

mean(x > 0)

[1] 0.5

This is a really powerful tool. Pretty much any time you want to
answer a question like "How many of X are Y" or "What percent of X
are Y", you use sum() or mean() function with a logical vector as an
argument.

Using indexing to change specific values of a vector

Now that you know how to index a vector, you can easily change
specific values in a vector using the assignment (<-) operation. To do
this, just assign a vector of new values to the indexed values of the
original vector:

Let’s create a vector a which contains 10 1s:

a <- rep(1, 10)

Now, let’s change the first 5 values in the vector to 9s by indexing
the first five values, and assigning the value of 9:

Technically, when you assign new
values to a vector, you should always
assign a vector of the same length as the
number of values that you are updating.
For example, given a vector a with 10

1s:

a <- rep(1, 10)

To update the first 5 values with 5 ‘9s’,
we should assign a new vector of 5 ‘9s’

a[1:5] <- c(9, 9, 9, 9, 9)
a

[1] 9 9 9 9 9 1 1 1 1 1

However, if we repeat this code but
just assign a single 9, R will repeat the
value as many times as necessary to fill
the indexed value of the vector. That’s
why the following code still works:

a[1:5] <- 9
a

[1] 9 9 9 9 9 1 1 1 1 1

In other languages this code wouldn’t
work because we’re trying to replace
5 values with just 1. However, this is a
case where R bends the rules a bit.

80 yarrr! the pirate’s guide to r

a[1:5] <- 9

a

[1] 9 9 9 9 9 1 1 1 1 1

Now let’s change the last 5 values to 0s. We’ll index the values 6

through 10, and assign a value of 0.

a[6:10] <- 0

a

[1] 9 9 9 9 9 0 0 0 0 0

Of course, you can also change values of a vector using a logical
indexing vector. For example, let’s say you have a vector of numbers
that should be from 1 to 10. If values are outside of this range, you
want to set them to either the minimum (1) or maximum (10) value:

x is a vector of numbers that should be from 1 to 10

x <- c(5, -5, 7, 4, 11, 5, -2)

Assign values less than 1 to 1

x[x < 1] <- 1

Assign values greater than 10 to 10

x[x > 10] <- 10

Print the result!

x

[1] 5 1 7 4 10 5 1

As you can see, our new values of x are now never less than 1 or
greater than 10!

Example: Fixing invalid responses to a Happiness survey

Assigning and indexing is a particularly helpful tool when, for exam-
ple, you want to remove invalid values in a vector before performing
an analysis. For example, let’s say you asked 10 people how happy
they were on a scale of 1 to 5 and received the following responses:

happy <- c(1, 4, 2, 999, 2, 3, -2, 3, 2, 999)

As you can see, we have some invalid values (999 and -2) in this
vector. To remove them, we’ll use logical indexing to change the

5: indexing vectors with [] 81

invalid values (999 and -2) to NA. We’ll create a logical vector indicat-
ing which values of happy are invalid using the %in% operation.20 20 Because we want to see which values

are invalid, we’ll add the == FALSE
condition (If we don’t, the index will
tell us which values are valid).# Which values of happy are NOT in the set 1:5?

invalid <- (happy %in% 1:5) == FALSE

invalid

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
We can also recode all the invalid

values of happy in one line as follows:

happy[(happy %in% 1:5) == FALSE] <- NANow that we have a logical index invalid telling us which values
are invalid (that is, not in the set 1 through 5), we’ll index happy with
invalid, and assign the invalid values as NA:

happy[invalid] <- NA

happy

[1] 1 4 2 NA 2 3 NA 3 2 NA

As you can see, happy now has NAs for previously invalid values.
Now we can take a mean() of the vector and see the mean of the valid
responses.

Include na.rm = TRUE to ignore NA values

mean(happy, na.rm = TRUE)

[1] 2.43

Additional Tips

R has lots of special functions that take vectors as arguments, and
return logical vectors based on multiple criteria. Here are some that I
frequently use:

82 yarrr! the pirate’s guide to r

Logical testing functions

is.integer(x)

Tests if values in a vector are integers

is.na(x), is.null(x)

Tests if values in a vector are NA or NULL

is.finite(x)

Tests if a value is a finite numerical value. If a value is NA, NULL,
Inf, or -Inf, is.finite() will return FALSE.

duplicated(x))

Returns FALSE at the first location of each unique value in x,
and TRUE for all future locations of unique values. For example,
duplicated(c(1, 2, 1, 2, 3)) returns (FALSE, FALSE, TRUE,
TRUE, FALSE). If you want to remove duplicated values from a
vector, just run x <- x[!duplicated(x)]

which(log.vec)

Logical vectors aren’t just good for indexing, you can also use
them to figure out which values in a vector satisfy some criteria. To
do this, use the function which(). If you apply the function which() to
a logical vector, R will tell you which values of the index are TRUE.
For example:

A vector of sex information

sex <- c("m", "m", "f", "m", "f", "f")

Which values of sex are m?

which(sex == "m")

[1] 1 2 4

Which values of sex are f?

which(sex == "f")

[1] 3 5 6

5: indexing vectors with [] 83

Test your R Might!: Movie data

The following vectors contain data about 10 of my favorite movies.

m.names <- c("Whatever Works", "It Follows", "Love and Mercy",
"The Goonies", "Jiro Dreams of Sushi",
"There Will be Blood", "Moon",
"Spice World", "Serenity", "Finding Vivian Maier")

year <- c(2009, 2015, 2015, 1985, 2012, 2007, 2009, 1988, 2005, 2014)

boxoffice <- c(35, 15, 15, 62, 3, 10, 321, 79, 39, 1.5)

genre <- c("Comedy", "Horror", "Drama", "Adventure", "Documentary",
"Drama", "Science Fiction", "Comedy", "Science Fiction",
"Documentary")

time <- c(92, 97, 120, 90, 81, 158, 97, -84, 119, 84)

rating <- c("PG-13", "R", "R", "PG", "G", "R", "R",
"PG-13", "PG-13", "Unrated")

1. What is the name of the 10th movie in the list?

2. What are the genres of the first 4 movies?

3. Some joker put Spice World in the movie names – it should be
“The Naked Gun” Please correct the name.

4. What were the names of the movies made before 1990?

5. How many movies were Dramas? What percent of the 10 movies
were Dramas?

6. One of the values in the time vector is invalid. Convert any invalid
values in this vector to NA. Then, calculate the mean movie time

7. What were the names of the Comedy movies? What were their
boxoffice totals? (Two separate questions)

8. What were the names of the movies that made less than $30 Mil-
lion dollars AND were Comedies?

9. What was the median boxoffice revenue of movies rated either G
or PG?

10. What percent of the movies were rated R and were comedies?

6: Matrices and Data Frames

Figure 31: Did you actually think I
could talk about matrices without a
Matrix reference?!

What are matrices and dataframes?

By now, you should be comfortable with scalar and vector objects.
However, you may have noticed that neither object types are appro-
priate for storing lots of data – such as the results of a survey or
experiment. Thankfully, R has two object types that represent large
data structures much better: matrices and dataframes.

Matrices and dataframes are very similar to spreadsheets in Excel
or data files in SPSS. Every matrix or dataframe contains rows (call
that number m) and columns (n). Thus, wile a vector has 1 dimen-
sion (its length), matrices and dataframes both have 2-dimensions
– representing their width and height. You can think of a matrix or
dataframe as a combination of n vectors, where each vector has a
length of m. See Figure 32 to see the shocking difference between
these data objects.

scalar v vector v matrix

par(mar = rep(1, 4))
plot(1, xlim = c(0, 10), ylim = c(-.5, 5),

xlab = "", ylab = "",
xaxt = "n", yaxt = "n",
bty = "n", type = "n")

scalar
rect(rep(0, 1), rep(0, 1), rep(1, 1), rep(1, 1))
text(.5, -.5, "scalar")

Vector
rect(rep(2, 5), 0:4, rep(3, 5), 1:5)
text(2.5, -.5, "Vector")

Matrix
rect(rep(4:8, each = 5),

rep(0:4, times = 5),
rep(5:9, each = 5),
rep(1:5, times = 5))

text(6.5, -.5, "Matrix / Data Frame"
)

scalar Vector Matrix / Data Frame

Figure 32: scalar, Vector, Matrix...
::drops mike::

While matrices and dataframes look very similar, they aren’t
exactly the same. While a matrix can contain either character or nu-
meric columns, a dataframe can contain both numeric and character
columns. Because dataframes are more flexible, most real-world
datasets, such as surveys containing both numeric (e.g.; age, response
times) and character (e.g.; sex, favorite movie) data, will be stored as
dataframes in R.21

21 WTF – If dataframes are more flexible
than matrices, why do we use matrices
at all? The answer is that, because
they are simpler, matrices take up less
computational space than dataframes.
Additionally, some functions require
matrices as inputs to ensure that they
work correctly.

In the next section, we’ll cover the most common functions for cre-
ating matrix and dataframe objects. We’ll then move on to functions
that take matrices and dataframes as inputs.

86 yarrr! the pirate’s guide to r

Creating matrices and dataframe objects

There are a number of ways to create your own matrix and dataframe
objects in R. Because matrices and dataframes are just combinations
of vectors, each function takes one or more vectors as inputs, and
returns a matrix or a dataframe.

Creating matrices and
dataframes

Function Description
cbind() Combine vectors as columns in a matrix/dataframe
rbind() Combine vectors as rows in a matrix/dataframe
matrix() Create a matrix with a desired number of rows and

columns from a single vector
data.frame() Combine vectors as columns in a dataframe

cbind() and rbind()

cbind() and rbind() both create matrices by combining several
vectors of the same length. cbind() combines vectors as columns,
while rbind() combines them as rows.

cbind()

rbind()
Let’s use these functions to create a matrix with the numbers 1

through 30. First, we’ll create three vectors of length 10, then we’ll
combine them into one matrix.

Keep in mind that matrices can either
contain numbers or characters. If
you try to create a matrix with both
numbers and characters, it will turn all
the numbers into characters:

cbind(1:5,
c("a", "b", "c", "d", "e"))

[,1] [,2]
[1,] "1" "a"
[2,] "2" "b"
[3,] "3" "c"
[4,] "4" "d"
[5,] "5" "e"

x <- 1:5

y <- 6:10

z <- 11:15

Create a matrix where x, y and z are columns

cbind(x, y, z)

x y z

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

Create a matrix where x, y and z are rows

rbind(x, y, z)

6: matrices and data frames 87

[,1] [,2] [,3] [,4] [,5]

x 1 2 3 4 5

y 6 7 8 9 10

z 11 12 13 14 15

As you can see, the cbind() function combined the vectors as
columns in the final matrix, while the rbind() function combined
them as rows.

matrix()
matrix()

The matrix() function creates a matrix form a single vector of data.
The function has 3 main inputs: data – a vector of data, nrow – the
number of rows you want in the matrix, and ncol – the number of
columns you want in the matrix, and byrow – a logical value indicat-
ing whether you want to fill the matrix by rows. Check out the help
menu for the matrix function (?matrix) to see some additional inputs.

Let’s use the matrix() function to re-create a matrix containing the
values from 1 to 10.

We can also organize the vector by rows
instead of columns using the argument
byrow = T:

Create a matrix of the integers 1:10,
with 2 rows and 5 columns entered by row

matrix(data = 1:10,
nrow = 2,
ncol = 5,
byrow = T)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

Create a matrix of the integers 1:10,

with 5 rows and 2 columns

matrix(data = 1:10,

nrow = 5,

ncol = 2)

[,1] [,2]

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

Now with 2 rows and 5 columns

matrix(data = 1:10,

nrow = 2,

ncol = 5)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

88 yarrr! the pirate’s guide to r

data.frame()

To create a dataframe from vectors, use the data.frame() function.
The data.frame() function works very similarly to cbind() – the only
difference is that in data.frame() you specify names to each of the
columns as you define them. Again, unlike matrices, dataframes
can contain both string vectors and numeric vectors within the same
object. Because they are more flexible than matrices, most large
datasets in R will be stored as dataframes. data.frame()

Let’s create a simple dataframe using the data.frame() function
with a mixture of text and numeric columns:

Create a dataframe with columns col.1,

col.2, and col.3

data.frame("index" = c(1, 2, 3, 4, 5),

"sex" = c("m", "m", "m", "f", "f"),

"age" = c(99, 46, 23, 54, 23))

index sex age

1 1 m 99

2 2 m 46

3 3 m 23

4 4 f 54

5 5 f 23

Dataframes pre-loaded in R

Now you know how to use functions like cbind() and data.frame()

to manually create your own matrices and dataframes in R. However,
for demonstration purposes, it’s frequently easier to use existing
dataframes rather than always having to create your own. Thankfully,
R has us covered: R has several datasets that come pre-installed in a
package called datasets – you don’t need to install this package, it’s
included in the base R software. While you probably won’t make any
major scientific discoveries with these datasets, they allow all R users
to test and compare code on the same sets of data. Here are a few To see a complete list of all the datasets

included in the datasets package, run
the code: library(help = "datasets")

datasets that we will be using in future examples:

• ChickWeight: Weight versus age of chicks on four different diets

• InsectSprays: Effectiveness of six different types of insect sprays

• ToothGrowth: The effects of different levels of vitamin C on the
tooth growth of guinea pigs.

6: matrices and data frames 89

Since these datasets are preloaded in R, you can always access
them without having to create them manually. For example, if
you run head(ToothGrowth), you’ll see the first few rows of the
ToothGrowth dataframe.

Matrix and dataframe functions

R has lots of functions for viewing matrices and dataframes and
returning information about them. Here are the most common:

Matrix and Dataframe
Functions

Function Description
head() Print the first few rows to the console
tail() Print the last few rows to the console
View() Open the entire object in a new window
dim() Count the number of rows and columns
nrow(), ncol() Count the number of rows (or columns)
rownames(), colnames() Show the row (or column) names
names() Show the column names (only for dataframes)
str() Show the structure of a dataframe
summary() Show summary statistics

View()

You can print an entire matrix or dataframe in the console by just
executing the name of the object, but if the matrix or dataframe is
very large, it can overwhelm the console. Instead, it’s best to use one
of the viewing functions like View() or head(). The View() function
will open the object in its own window: View()
Print the entire ChickWeight dataframe

in a new data window

View(ChickWeight)

head()

To print the first few rows of a dataframe or matrix to the console,
use the head() function:

90 yarrr! the pirate’s guide to r

Figure 33: Screenshot of the window
from View(ChickWeight). You can use
this window to visually sort and filter
the data to get an idea of how it looks,
but you can’t add or remove data and
nothing you do will actually change the
dataframe.

head()
Print the first few rows of ChickWeight

to the console

head(ChickWeight)

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

3 59 4 1 1

4 64 6 1 1

5 76 8 1 1

6 93 10 1 1

summary()

To get summary statistics on all columns in a dataframe, use the
summary() function: summary()
Print summary statistics of the columns of

ChickWeight to the console

summary(ChickWeight)

weight Time Chick Diet

Min. : 35 Min. : 0.0 13 : 12 1:220

1st Qu.: 63 1st Qu.: 4.0 9 : 12 2:120

Median :103 Median :10.0 20 : 12 3:120

Mean :122 Mean :10.7 10 : 12 4:118

3rd Qu.:164 3rd Qu.:16.0 17 : 12

Max. :373 Max. :21.0 19 : 12

6: matrices and data frames 91

(Other):506

str()

To learn about the classes of columns in a dataframe, in addition to
some other summary information, use the str() (structure) function.
This function returns information for more advanced R users, so
don’t worry if the output looks confusing. str()
Print the classes of the columns of
ChickWeight to the console

str(ChickWeight)

Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 578 obs. of 4 variables:
$ weight: num 42 51 59 64 76 93 106 125 149 171 ...
$ Time : num 0 2 4 6 8 10 12 14 16 18 ...
$ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 15 15 15 15 15 ...
$ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "formula")=Class 'formula' language weight ~ Time | Chick
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "outer")=Class 'formula' language ~Diet
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time"
..$ y: chr "Body weight"
- attr(*, "units")=List of 2
..$ x: chr "(days)"
..$ y: chr "(gm)"

Here are some of the other functions in action:

What are the names of the ChickWeight columns?

names(ChickWeight)

[1] "weight" "Time" "Chick" "Diet"

How many rows are in ChickWeight?

nrow(ChickWeight)

[1] 578

How many columns are in ChickWeight?

ncol(ChickWeight)

[1] 4

Dataframe column names

One of the nice things about dataframes is that each column will have
a name. You can use these name to access specific columns by name

92 yarrr! the pirate’s guide to r

without having to know which column number it is.

names()
names()

To access the names of a dataframe, use the function names(). This
will return a string vector with the names of the dataframe. Let’s use
names() to get the names of the ToothGrowth dataframe:

What are the names of the ToothGrowth dataframe?

names(ToothGrowth)

[1] "len" "supp" "dose"

Accessing dataframe columns by name with $

To access a specific column in a dataframe by name, you use the $ op-
erator in the form df$colname where df is the name of the dataframe,
and colname is the name of the column you are interested in. This
operation will then return the column you want as a vector. df$column

Let’s use the $ operator to get a vector of just the length column
(called len) from the ToothGrowth dataset:

Return the len column of ToothGrowth
ToothGrowth$len

[1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3
[15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5
[29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3
[43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9
[57] 26.4 27.3 29.4 23.0

If you want to access several columns by name, you can forgo the $
operator, and put a character vector of column names in brackets:

Give me the len AND supp columns of ToothGrowth

ToothGrowth[c("len", "supp")]

Because the $ operator returns a vector, you can easily calculate
descriptive statistics on columns of a dataframe by applying your
favorite vector function (like mean() or table()) to a column using $.
Let’s calculate the mean tooth length with mean(), and the frequency
of each supplement with table():

What is the mean of the len column of ToothGrowth?

mean(ToothGrowth$len)

[1] 18.8

6: matrices and data frames 93

Give me a table of the supp column of ToothGrowth.

table(ToothGrowth$supp)

##

OJ VC

30 30

Adding new columns to a dataframe

Add a new column a to an existing dataframe

df$a <- a

You can add new columns to a dataframe using the $ and as-
signment <- operators. To do this, just use the dataframe$colname

notation and assign a new vector to it. Let’s test this by adding a new
column to ToothGrowth called len.cm which converts the original len
column from millimeters to centimeters Because 10mm = 1cm, we’ll
just divide the original len column by 10. df$new <- []

Add a new column called len.cm to

ToothGrowth calculated as len / 10

ToothGrowth$len.cm <- ToothGrowth$len / 10

You can add new columns with any information that you want to
a dataframe - even basic numerical vectors. For example, let’s add
a simple index column to the dataframe showing the original order
of the rows of the data. To do this, I’ll assign the numeric vector
1:nrow(ToothGrowth) to a new column called index

Add a new columnn called index to

ToothGrowth with integers 1:nrow(ToothGrowth)

ToothGrowth$index <- 1:nrow(ToothGrowth)

Changing dataframe column names
names(df)[x] <- ’new.name’

To change the name of a column in a dataframe, just use a combina-
tion of the names() function, indexing, and reassignment.

Change name of 1st column of df to "a"

names(df)[1] <- "a"

94 yarrr! the pirate’s guide to r

Change name of 2nd column of df to "b"

names(df)[2] <- "b"

For example, because we created a new column called len.cm to
ToothGrowth, we should probably change the name of the original len
column to len.mm so we know which column has which unit:

Change the name of the first column of

ToothGrowth to "len.mm"

names(ToothGrowth)[1] <- "len.mm"
Change column names with logical
indexing to avoid errors!Now, there is one major potential problem with my method above

– I had to manually enter the value of 1. But what if the column I
want to change isn’t in the first column (either because I typed it
wrong or because the order of the columns changed)? This could
lead to serious problems later on.

To avoid these issues, it’s better to change column names using a
logical vector in two steps. First, save the original names as a new
vector (e.g.; names.o). Then, change the column names by indexing
the original names. Here’s how this works in general: : Here’s how to read this: "Change

the names of df, but only where the
original name was "old.name", to
"new.name"

Changing column names with logical indexing

Step 1: Save original names to names.o

names.o <- names(df)

Step 2: Index and assign!

names(df)[names.o == "old.name"] <- "new.name"

For example, I could have changed the name of the len column in
ToothGrowth to len.mm as follows:

Change "len" to "len.mm" in ToothGrowth

names.o <- names(ToothGrowth)

names(ToothGrowth)[names.o == "len"] <- "len.mm"

I’m going to change the names of
ToothGrowth back to their original
values as we’ll use them again later in
this chapter.

Change "len.mm" back to "len"
names.o <- names(ToothGrowth)
names(ToothGrowth)[names.o == "len.mm"] <- "len"

Let’s do another example: consider the following dataframe
study1, which mixes up the names of the columns sex and age:

id sex income height age

1 1 32 4000 165 m

2 2 22 5000 175 m

3 3 42 2000 180 f

As you can see, the names of the sex and age columns are reversed.
We can fix this using assignment and logical indexing as follows.

6: matrices and data frames 95

First, we’ll save the original names in a vector called names.o. Then,
we’ll index names(study1) using a logical index based on names.o

and re-assign!

Save original names as names.o

names.o <- names(study1)

Re-assign names of study1 with logical

indexing and assignment

names(study1)[names.o == "age"] <- "sex"

names(study1)[names.o == "sex"] <- "age"

Print the result!

study1

id age income height sex

1 1 32 4000 165 m

2 2 22 5000 175 m

3 3 42 2000 180 f

96 yarrr! the pirate’s guide to r

Slicing and dicing dataframes

Once you have a dataset stored as a matrix or dataframe in R, you’ll
want to start accessing specific parts of the data based on some crite-
ria. For example, if your dataset contains the result of an experiment
comparing different experimental groups, you’ll want to calculate
statistics for each experimental group separately. The process of se-
lecting specific rows and columns of data based on some criteria is
commonly known as slicing and dicing.

Figure 34: Slicing and dicing data. The
turnip represents your data, and the
knife represents indexing with brackets,
or subsetting functions like subset().
The black-eyed clown holding the knife
is just off camera.

Indexing matrices and dataframes with brackets [rows, columns]

Give me the first row of df

df[1,]

Just column 5

df[, 5]

Rows 1:5 and column 2

df[1:5, 2]

Just like vectors, you can access specific data in dataframes using
brackets. But now, instead of just using one indexing vector, we use
two indexing vectors: one for the rows and one for the columns.
To do this, use the notation data[rows, columns], where rows and
columns are vectors of integers. df[rows, columns]

Let’s try indexing the ToothGrowth dataframe. Again, the Tooth-
Growth dataframe represents the results of a study testing the effec-
tiveness of different types of supplements on the length of guinea
pig’s teeth. First, let’s look at the entries in rows 1 through 5, and
column 1:

Give me the rows 1-5 and column 1 of ToothGrowth

ToothGrowth[1:5, 1]

[1] 4.2 11.5 7.3 5.8 6.4

Because the first column is len, the primary dependent measure,
this means that the tooth lengths in the first 5 observations are 4.2,
11.5, 7.3, 5.8, 6.4.

Of course, you can index matrices and dataframes with longer vec-
tors to get more data. Now, let’s look at the first 3 rows of columns 1

and 3:

6: matrices and data frames 97

Give me rows 1-3 and columns 1 and 3 of ToothGrowth

ToothGrowth[1:3, c(1,3)]

len dose

1 4.2 0.5

2 11.5 0.5

3 7.3 0.5

Figure 35: Ah the ToothGrowth
dataframe. Yes, one of the dataframes
stored in R contains data from an ex-
periment testing the effectiveness of
different doses of Vitamin C supple-
ments on the growth of guinea pig
teeth. The images I found by Googling
“guinea pig teeth” were all pretty
horrifying, so let’s just go with this one.

Get an entire row (or column)

If you want to look at an entire row or an entire column of a matrix
or dataframe, you can leave the corresponding index blank. For
example, to see the entire 1st row of the ToothGrowth dataframe, we
can set the row index to 1, and leave the column index blank:

Give me the 1st row of ToothGrowth

ToothGrowth[1,]

len supp dose len.cm index

1 4.2 VC 0.5 0.42 1

Similarly, to get the entire 2nd column, set the column index to 2

and leave the row index blank:

Give me the 2nd column of ToothGrowth

ToothGrowth[, 2]

Many, if not all, of the analyses you will be doing will be on
subsets of data, rather than entire datasets. For example, if you have
data from an experiment, you may wish to calculate the mean of
participants in one group separately from another. To do this, we’ll
use subsetting – selecting subsets of data based on some criteria.
To do this, we can use one of two methods: indexing with logical
vectors, or the subset() function. We’ll start with logical indexing
first.

Indexing matrices and dataframes with logical vectors

Indexing dataframes with logical vectors is almost identical to index-
ing single vectors. First, we create a logical vector containing only
TRUE and FALSE values. Next, we index a dataframe (typically the
rows) using the logical vector to return only values for which the
logical vector is TRUE.

For example, to create a new dataframe called ToothGrowth.VC

containing only data from the guinea pigs who were given the VC
supplement, we’d run the following code:

98 yarrr! the pirate’s guide to r

Create a new df with only the rows of ToothGrowth

where supp equals VC

ToothGrowth.VC <- ToothGrowth[ToothGrowth$supp == "VC",]

Of course, just like we did with vectors, we can make logical
vectors based on multiple criteria – and then index a dataframe
based on those criteria. For example, let’s create a dataframe called
ToothGrowth.OJ.a that contains data from the guinea pigs who were
given an OJ supplement with a dose less than 1.0:

Create a new df with only the rows of ToothGrowth

where supp equals OJ and dose < 1

ToothGrowth.VC.a <- ToothGrowth[ToothGrowth$supp == "OJ" &

ToothGrowth$dose < 1,]

Indexing with brackets is the standard way to slice and dice
dataframes. However, the code can get a bit messy. A more elegant
method is to use the subset() function.

subset() subset()

Figure 36: The subset() function is like
a lightsaber. An elegant function from a
more civilized age...

subset()

x

The data (usually a dataframe)

subset

A logical vector indicating which rows you want to select

select

An optional vector of the columns you want to select

Let’s use the subset() function to create a new, subsetted dataset
from the ToothGrowth dataframe containing data from guinea pigs
who had a tooth length less than 20cm (len < 20), given the OJ
supplement (supp == "OJ"), and with a dose greater than or equal to
1 (dose >= 1):

6: matrices and data frames 99

Create a subsetted dataframe from ToothGrowth

of rows where len < 20, supp == "OJ" and dose >= 1

subset(x = ToothGrowth,

subset = len < 20 &

supp == "OJ" &

dose >= 1)

len supp dose len.cm index

41 19.7 OJ 1 1.97 41

49 14.5 OJ 1 1.45 49

As you can see, there were only two datapoints that satisfied all 3

of our subsetting criteria.
In the example above, I didn’t specify an input to the select

argument because I wanted all columns. However, if you just want
certain columns, you can just name the columns you want in the
select argument (see example on the right):

EXPLANATION:
#
From the ToothGrowth dataframe,
give me all rows where len < 20
AND supp == "OJ" AND dose >= 1.
Then, return just the len and
supp columns.

subset(x = ToothGrowth,
subset = len < 20 &

supp == "OJ" &
dose >= 1,

select = c(len, supp))

len supp
41 19.7 OJ
49 14.5 OJ

Combining slicing and dicing with functions

Now that you know how to slice and dice dataframes using indexing
and subset(), you can easily combine slicing and dicing with statis-
tical functions to calculate summary statistics on groups of data. For
example, the following code will calculate the mean tooth length of
guinea pigs with the OJ supplement using the subset() function:

Step 1: Create a subsettted dataframe called oj

oj <- subset(x = ToothGrowth,

subset = supp == "OJ")

Step 2: Calculate the mean of the len column from

the new subsetted dataset

mean(oj$len)

[1] 20.7

Or, we can do the same thing with logical indexing:

Step 1: Create a subsettted dataframe called oj

oj <- ToothGrowth[ToothGrowth$supp == "OJ",]

Step 2: Calculate the mean of the len column from

100 yarrr! the pirate’s guide to r

the new subsetted dataset

mean(oj$len)

[1] 20.7

Or heck, we can do it all in one line by only referring to column
vectors:

Step 1: Take the mean of len column, indexed by

the supp column

mean(ToothGrowth$len[ToothGrowth$supp == "OJ"])

[1] 20.7

As you can see, R allows for many methods to accomplish the
same task. The choice is up to you.

Additional tips

with()
with(df,)

The function with() helps to save you some typing when you are us-
ing multiple columns from a dataframe. Specifically, it allows you to
specify a dataframe (or any other object in R) once at the beginning
of a line – then, for every object you refer to in the code in that line, R
will assume you’re referring to that object in an expression.

For example, using the ToothGrowth dataset, we can calculate a
vector defined as len divided by dose using the with() function
where we specify the name of the dataframe (ToothGrowth) just once
at the beginning of the line, and then refer to the column names
without re-writing the dataframe or using the $ operator:

Create a vector of len / dose from ToothGrowth

with(ToothGrowth, len / dose)

THIS IS IDENTICAL TO

ToothGrowth$len / ToothGrowth$dose

If you find yourself making several calculations on one dataframe,
the with() function can save you a lot of typing.

6: matrices and data frames 101

Test your R might! Pirates and superheroes

Figure 37: This is a lesser-known
superhero named “Maggott” who
could “transform his body to get
superhuman strength and endurance,
but to do so he needed to release two
huge parasitic worms from his stom-
ach cavity and have them eat things”
(http://heavy.com/comedy/2010/04/the-
20-worst-superheroes/). Yeah...I’m
shocked this guy wasn’t a hit.

The following table shows the results of a survey of 10 pirates. In
addition to some basic demographic information, the survey asked
each pirate “What is your favorite superhero?” and “How many
tattoos do you have?”

Name Sex Age Superhero Tattoos
Astrid f 30 Batman 11

Lea m 25 Superman 15

Sarina m 25 Batman 12

Remon m 29 Spiderman 12

Letizia f 72 Batman 17

Babice m 22 Antman 12

Jonas f 35 Batman 9

Wendy f 7 Superman 13

Niveditha m 32 Maggott 875

Gioia f 21 Superman 0

1. Combine the data into a single dataframe. Complete all the follow-
ing exercises from the dataframe!

2. What is the median age of the 10 pirates?

3. What was the mean age of female and male pirates separately?

4. What was the most number of tattoos owned by a male pirate?

5. What percent of pirates under the age of 32 were female?

6. What percent of female pirates are under the age of 32?

7. Add a new column to the dataframe called tattoos.per.year

which shows how many tattoos each pirate has for each year in
their life.

8. Which pirate had the most number of tattoos per year?

9. What are the names of the female pirates whose favorite superhero
is Superman?

10. What was the median number of tattoos of pirates over the age of
30 whose favorite superhero is Spiderman?

7: Importing, saving, and managing data

Remember way back in Chapter 2
22 when I said everything in R is 22 You know...back when we first

met...we were so young and full of
excitement then...sorry, now I’m getting
emotional...let’s move on.

an object? Well, that’s still true. In this chapter, we’ll cover the basics
of R object management. We’ll cover how to load new objects like
external datasets into R, how to manage the objects that you already
have, and how to export objects from R into external files that you
can share with other people or store for your own future use.

Figure 38: Your workspace – all the
objects, functions, and delicious glue
you’ve defined in your current session.

Helpful workspace functions

Here are some functions helpful for managing your workspace that
we’ll go over in this chapter:

Code Result
getwd() Returns the current working directory
setwd(file =) Changes the working directory to a specified file location
list.files() Returns a vector of all files and folders in the working

directory
ls() Display all objects in the current workspace
rm(a, b, ..) Removes the objects a, b... from your workspace
rm(list = ls()) Deletes all objects in your workspace
save(a, b, .., file = "myimage.RData) Saves objects a, b, ... to “myimage.RData”
save.image(file = "myimage.RData") Saves your entire workspace to “myimage.RData” in the

working directory
load(file = "myimage.RData") Loads a stored workspace called “myimage.RData” from

the working directory
write.table(x, file = "mydata.txt") Saves the object x as a text file called "mydata.txt" to the

working directory
read.table(file = "mydata.txt") Reads a text file called "mydata.txt" in the working

directory into R.

104 yarrr! the pirate’s guide to r

Why object and file management is so important

Figure 39: Your computer is probably
so full of selfies like this that if you
don’t get organized, you may try to
load this into your R session instead of
your data file.

Your computer is a maze of folders, files, and selfies (see Figure 39).
Outside of R, when you want to open a specific file, you probably
open up an explorer window that allows you to visually search
through the folders on your computer. Or, maybe you select recent
files, or type the name of the file in a search box to let your computer
do the searching for you. While this system usually works for non-
programming tasks, it is a no-go for R. Why? Well, the main problem
is that all of these methods require you to visually scan your folders
and move your mouse to select folders and files that match what you
are looking for. When you are programming in R, you need to specify
all steps in your analyses in a way that can be easily replicated by
others and your future self. This means you can’t just say: "Find this
one file I emailed to myself a week ago" or "Look for a file that looks
something like experimentAversion3.txt." Instead, need to be able to
write R code that tells R exactly where to find critical files – either on
your computer or on the web.

To make this job easier, R uses working directories.

The working directory

Figure 40: A working directory is like
a flag on your computer that tells R
where to start looking for your files
related to a specific project. Each
project should have its own folder with
organized sub-folders.

The working directory is just a file path on your computer that sets
the default location of any files you read into R, or save out of R. In
other words, a working directory is like a little flag somewhere on
your computer which is tied to a specific analysis project. If you ask
R to import a dataset from a text file, or save a dataframe as a text

7: importing, saving, and managing data 105

file, it will assume that the file is inside of your working directory. You can only have one working direc-
tory active at any given time. The active
working directory is called your current
working directory.

To see your current working directory, use getwd():

getwd()
Print my current working directory

getwd()

[1] "/Users/CaptainJack/Desktop/yarrr"

As you can see, when I run this code, it tells me that my working
directory is in a folder on my Desktop called yarrr. This means that
when I try to read new files into R, or write files out of R, it will
assume that I want to put them in this folder.

If you want to change your working directory, use the setwd()

function. For example, if I wanted to change my working directory to
an existing Dropbox folder called yarrr, I’d run the following code:

Chnage my working directory to the following path

setwd(dir = "/Users/CaptainJack/Dropbox/yarrr")

setwd()
Projects in RStudio

If you’re using RStudio, you have the option of creating a new R
project. A project is simply a working directory designated with a
.RProj file. When you open a project (using File/Open Project in
RStudio or by double–clicking on the .Rproj file outside of R), the
working directory will automatically be set to the directory that the
.RProj file is located in.

I recommend creating a new R Project whenever you are starting
a new research project. Once you’ve created a new R project, you
should immediately create folders in the directory which will contain
your R code, data files, notes, and other material relevant to your
project (you can do this outside of R on your computer, or in the Files
window of RSTudio). For example, you could create a folder called r

that contains all of your R code, a folder called data that contains all
your data (etc.). In Figure 41 you can see how my working directory
looks for a project I am working on called ForensicFFT.

The workspace

The workspace (aka your working environment) represents all of the
objects and functions you have either defined in the current session,
or have loaded from a previous session. When you started RStudio
for the first time, the working environment was empty because you

106 yarrr! the pirate’s guide to r

Figure 41: Here is the folder structure I
use for the working directory in my R
project called ForensicFFT. As you can
see, it contains an .Rproj file generated
by RStudio which sets this folder as
the working directory. I also created
a folder called r for R code, a folder
called data for .txt and .RData files)
among others.

hadn’t created any new objects or functions. However, as you defined
new objects and functions using the assignment operator <-, these
new objects were stored in your working environment. When you
closed RStudio after defining new objects, you likely got a message
asking you “Save workspace image...?” This is RStudio’s way of
asking you if you want to save all the objects currently defined in
your workspace as an image file on your computer.

ls()

If you want to see all the objects defined in your current workspace,
use the ls() function.

Print all the objects in my workspace

ls()

ls()
When I run ls() I received the following result:

[1] "study1.df" "study2.df" "lm.study1" "lm.study2" "bf.study1"

The result above says that I have these 5 objects in my workspace.
If I try to refer to an object not listed here, R will return an error. For
example, if I try to print study3.df (which isn’t in my workspace), I
will receive the following error:

Try to print study3.df

Error because study3.df is NOT in my current workspace

study3.df

Error in eval(expr, envir, enclos): object ’study3.df’ not

found

7: importing, saving, and managing data 107

If you receive this error, it’s because the object you are referring to
is not in your current workspace. 99% of the time, this happens when
you mistype the name of an object.

Saving and loading data with .RData files

The best way to store objects from R is with .RData files. .RData
files are specific to R and can store as many objects as you’d like
within a single file. Think about that. If you are conducting an analy-
sis with 10 different dataframes and 5 hypothesis tests, you can save
all of those objects in a single .RData file.

save()
save()

To save selected objects into one .RData file, use the save() function.
When you run the save() function with specific objects as arguments,
all of those objects will be saved in a single .RData file.

Figure 42: Saving multiple objects into a
single .RData file.

For example, let’s create a few objects corresponding to a study.

study1.df <- data.frame(id = 1:5,

sex = c("m", "m", "f", "f", "m"),

score = c(51, 20, 67, 52, 42))

108 yarrr! the pirate’s guide to r

score.by.sex <- aggregate(score ~ sex,

FUN = mean,

data = study1.df)

study1.htest <- t.test(score ~ sex, data = study1.df)

Now that we’ve done all of this work, we want to save all three
objects in an .RData file called study1.RData in the data folder of my
current working directory. To do this, you can run the following:

Save two objects as a new .RData file

in the data folder of my current working directory

save(study1.df, score.by.sex, study1.htest,

file = "data/study1.RData")

Figure 43: Our new study1.RData file is
like a van filled with our objects.

Once you do this, you should see the study1.RData file in the data
folder of your working directory. This file now contains all of your
objects that you can easily access later using the load() function
(we’ll go over this in a second...).

save.image() save.image()
If you have many objects that you want to save, then using save can
be tedious as you’d have to type the name of every object. To save all
the objects in your workspace as a .RData file, use the save.image()

function. For example, to save my workspace in the data folder
located in my working directory, I’d run the following:

Save my workspace to complete_image.RData in th,e

data folder of my working directory

save.image(file = "data/projectimage.RData")

Now, the projectimage.RData file contains all objects in your
current workspace.

load()
load()

To load an .RData file, that is, to import all of the objects contained in
the .RData file into your current workspace, use the load() function.
For example, to load the three specific objects that I saved earlier
(study1.df, score.by.sex, and study1.htest) in study1.RData, I’d
run the following:

Load objects in study1.RData into my workspace

load(file = "data/study1.RData")

7: importing, saving, and managing data 109

To load all of the objects in the workspace that I just saved to the
data folder in my working directory in projectimage.RData, I’d run
the following:

Load objects in projectimage.RData into my workspace

load(file = "data/projectimage.RData")

I hope you realize how awesome
loading .RData files is. With R, you
can store all of your objects, from
dataframes to hypothesis tests, in a
single .RData file. And then load them
into any R session at any time using
load().

rm()

rm()

To remove objects from your workspace, use the rm() function. Why
would you want to remove objects? At some points in your analyses,
you may find that your workspace is filled up with one or more
objects that you don’t need – either because they’re slowing down
your computer, or because they’re just distracting.

To remove specific objects, enter the objects as arguments to rm().
For example, to remove a huge dataframe called huge.df, I’d run the
following;

Remove huge.df from workspace

rm(huge.df)

If you want to remove all of the objects in your working directory,
enter the argument list = ls()

Remove ALL objects from workspace

rm(list = ls())

Important!!! Once you remove an object, you cannot get it back
without running the code that originally generated the object! That
is, you can’t simply click ’Undo’ to get an object back. Thankfully, if
your R code is complete and well-documented, you should easily be
able to either re-create a lost object (e.g.; the results of a regression
analysis), or re-load it from an external file.

Saving and loading data as .txt files

While .RData files are great for saving R objects, sometimes you’ll
want to export data (usually dataframes) as a simple .txt text file
that other programs, like Excel and Shitty Piece of Shitty Shit, can
also read. To do this, use the write.table() function. write.table()

110 yarrr! the pirate’s guide to r

write.table()

x

The object you want to write to a text file – usually a dataframe.

file

The document’s file path relative to the working directory un-
less specified otherwise. For example file = "mydata.txt"

will save the data as a text file directly in the current work-
ing directory, while file = "data/mydata.txt" will save
the data in a folder called ‘data’ inside the working direc-
tory. If you want to write the file to someplace outside of
your working directory, just put the full file path (e.g.; file =

"/Users/CaptainJack/Desktop/OctoberStudy/mydata.txt".

sep

A string indicating how the columns are separated. For comma
separated files, use ‘‘,’’, for tab–delimited files, use ‘‘\t’’

row.names

A logical value (TRUE or FALSE) indicating whether or not save
the rownames in the text file.

For example, the following code will save the ChickWeight object
as a tab–delimited text file in my working directory:

Write the ChickWeight dataframe object to a tab-delimited

text file called chickweight.txt in the data folder of

my working directory

write.table(x = ChickWeight,

file = "data/chickweight.txt",

sep = "\t") # Make the columns tab-delimited

If you want to save a file to a location outside of your working di-
rectory, just use the entire directory name. For example, to save a text
file to my Desktop, I would set file = "Users/nphillips/Desktop".
When you enter a long path name into the file argument of read.table(),
R will look for that directory outside of your working directory.

Reading dataframes from .txt files read.table()
If you have a .txt file that you want to read into R, use the read.table()

function.

7: importing, saving, and managing data 111

read.table()

file

The document’s file path (make sure to enter as a string with
quotation marks!) OR an html link to a file.

header

A logical value indicating whether the data has a header row –
that is, whether the first row of the data represents the column
names.

sep

A string indicating how the columns are separated. For comma
separated files, use ",", for tab-delimited files, use "\t"

stringsAsFactors

A logical value indicating whether or not to convert strings to
factors. I always set this to FALSE (because I don’t like using
factors)

The three critical arguments to read.table() are file, sep, and
header. The file argument is a character value telling R where to
find the file. If the file is in in a folder in your working directory,
just specify the path within your working directory (e.g.; file =

data/newdata.txt. The sep argument tells R how the columns are
separated in the file (again, for a comma–separated file, use sep =

‘‘,’’, for a tab–delimited file, use sep = "\t". Finally, the header is a
logical value (TRUE or FALSE) telling R whether or not the first row
in the data is the name of the data columns.

Let’s test this function out by reading in a text file titled mydata.txt.
Since the text file is located a folder called data in my working direc-
tory, I’ll use the file path file = "data/mydata.txt" and since the file
is tab–delimited, I’ll use the argument sep = "\t":

Read a tab-delimited text file called mydata.txt

from the data folder in my working directory into

R and store as a new object called mydata

mydata <- read.table(file = 'data/mydata.txt',

sep = '\t',

header = TRUE)

112 yarrr! the pirate’s guide to r

If you receive an error, it’s likely because you specified the file
name (or location wrong), or that the file does not exist.

Reading datafiles directly from a web URL

A really neat feature of the read.table() function is that you can
use it to load datafiles directly from the web. To do this, just set the
file path to the document’s web URL (beginning with http://). For
example, I have a text file stored at http://goo.gl/jTNf6P. You can
import and save this tab–delimited text file as a new object called
fromweb as follows:

fromweb <- read.table(file = 'http://goo.gl/jTNf6P',

sep = '\t',

header = TRUE)

I think this is pretty darn cool. This means you can save your main
data files on Dropbox or a web-server, and always have access to it
from any computer by accessing it from its web URL.

The fromweb dataframe should look
like this:

fromweb

message randomdata
1 Congratulations! 1
2 you 2
3 just 3
4 downloaded 4
5 this 5
6 table 6
7 from 7
8 the 8
9 web! 9

Additional Tips

• There are many functions other than read.table() for importing
data. For example, the functions read.csv and read.delim are
specific for importing comma-separated and tab-separated text
files. In practice, these functions do the same thing as read.table,
but they don’t require you to specify a sep argument. Personally, I
always use read.table() because it always works and I don’t like
trying to remember unnecessary functions.

• If you absolutely have to read a non-text file into R, check out the
package called foreign. This package has functions for importing
Stata, SAS and Shitty Piece of Shitty Shit files directly into R. To
read Excel files, try the package xlsx

7: importing, saving, and managing data 113

Test your R Might!

1. In RStudio, open a new R Project in a new directory by clicking
File – New Project. Call the directory “MyRProject”, and then
select a directory on your computer for the project. This will be the
project’s working directory.

2. Outside of RStudio, navigate to the directory you selected in
Question 1 and create three new folders – Call them data, r, and
notes.

3. Go back to RStudio and open a new R script. Save the script as
CreatingObjects.R in the r folder you created in Question 2.

4. In the script, create new objects called a, b, and c. You can assign
anything to these objects – from vectors to dataframes. If you can’t
think of any, use these:

a <- data.frame("sex" = c("m", "f", "m"),

"age" = c(19, 43, 25),

"favorite.movie" = c("Moon", "The Goonies", "Spice World"))

b <- mean(a$age)

c <- table(a$sex)

5. Send the code to the Console so the objects are stored in your
current workspace. Use the ls() function to see that the objects
are indeed stored in your workspace.

6. I have a tab–delimited text file called club at the following web ad-
dress: http://nathanieldphillips.com/wp-content/uploads/2015/12/club.txt.
Using read.table(), load the data as a new object called club.df

in your workspace.

7. Using write.table(), save the dataframe as a tab–delimited text
file called club.txt to the data folder you created in Question 2. 23 23 You won’t use the text file again

for this exercise, but now you have it
handy in case you need to share it with
someone who doesn’t use R.

8. Save the three objects a, b, c, and club.df to an .RData file called
"myobjects.RData" in your data folder using save().

9. Clear your workspace using the rm(list = ls()) function. Then,
run the ls() function to make sure the objects are gone.

10. Open a new R script called AnalyzingObjects.R and save the script
to the r folder you created in Question 2.

11. Now, in your AnalyzingObjects.R script, load the objects back into
your workspace from the "myobjects.RData" file using the load()

114 yarrr! the pirate’s guide to r

function. Again, run the ls() function to make sure all the objects
are back in your workspace.

12. Add some R code to your AnalyzingObjects.R script. Calculate
some means and percentages. Now save your AnalyzingObjects.R

script, and then save all the objects in your workspace to "myob-
jects.RData".

13. Congratulations! You are now a well-organized R Pirate! Quit
RStudio and go outside for some relaxing pillaging.

8: Advanced dataframe manipulation

In this chapter we’ll cover some more advanced functions and proce-
dures for manipulating dataframes.

Exam data
exam <- data.frame(

id = 1:5,
q1 = c(1, 5, 2, 3, 2),
q2 = c(8, 10, 9, 8, 7),
q3 = c(3, 7, 4, 6, 4))

Demographic data
demographics <- data.frame(

id = 1:5,
sex = c("f", "m", "f", "f", "m"),
age = c(25, 22, 24, 19, 23))

Combine exam and demographics
combined <- merge(x = exam,

y = demographics,
by = "id")

Mean q1 score for each sex
aggregate(formula = q1 ~ sex,

data = combined,
FUN = mean)

Median q3 score for each sex, but only for those
older than 20
aggregate(formula = q3 ~ sex,

data = combined,
subset = age > 20,
FUN = mean)

Many summary statistics by sex using dplyr!
library(dplyr)
combined %>% group_by(sex) %>%

summarise(
q1.mean = mean(q1),
q2.mean = mean(q2),
q3.mean = mean(q3),
age.mean = mean(age),
N = n())

In Chapter 6, you learned how to calculate statistics on subsets of
data using indexing. However, you may have noticed that indexing is
not very intuitive and not terribly efficient. If you want to calculate

116 yarrr! the pirate’s guide to r

statistics for many different subsets of data (e.g.; mean birth rate for
every country), you’d have to write a new indexing command for
each subset, which could take forever. Thankfully, R has some great
built-in functions like aggregate() that allow you to easily apply
functions (like mean()) to a dependent variable (like birth rate) for
every level of one or more independent variables (like a country) with
just a few lines of code.

The SLOW way to calculate summary statistics

mean.seinfeld <- mean(smoke[tv == "seinfeld"])
mean.simpsons <- mean(smoke[tv == "simpsons"])
mean.tatort <- mean(smoke[tv == "tatort"])
#.....Sorting dataframes with order()

To sort the rows of a dataframe according to column values, use a
combination of indexing, reassignment, and the order() function.
The order() function takes one or more vectors as arguments, and
returns an integer vector indicating the order of the vectors. You can
use the output of order() to index a dataframe, and thus change its
order.

Let’s re-order the pirates data by height from the shortest to the
tallest Important! Don’t forget than in order

to change an object in R, you must
reassign it! If you try to reorder a
dataframe without reassigning it with
the <- operator, it won’t change.

Sort the pirates dataframe by height

pirates <- pirates[order(pirates$height),]

By default, the order() function will sort values in ascending
(increasing) order. If you want to order the values in descending
(decreasing) order, just add the argument decreasing = TRUE to the
order() function:

Sort the pirates dataframe by height in decreasing order

pirates <- pirates[order(pirates$height, decreasing = TRUE),]

To order a dataframe by several columns, just add additional
arguments to order(). For example, to order the pirates by sex and
then by height, we’d do the following:

Sort the pirates dataframe by sex and then height

pirates <- pirates[order(pirates$sex, pirates$height),]

8: advanced dataframe manipulation 117

Merging dataframes with merge()

One of the most common data management tasks is merging (aka
combining) two data sets together. For example, imagine you conduct
a study where 5 participants are given a score from 1 to 5 on a risk
assessment task. We can represent these data in a dataframe called
risk.survey:

Results from a risk survey

risk.survey <- data.frame(

"participant.id" = c(1, 2, 3, 4, 5),

"risk.score" = c(3, 4, 5, 3, 1))

Here’s the risk survey data
participant.id risk.score

1 3

2 4

3 5

4 3

5 1

Now, imagine that in a second study, you have participants
complete a survey about their level of happiness (on a scale of 0

to 100). We can represent these data in a new dataframe called
happiness.survey. In this case, participant 3 did not complete the
survey, but a new participant 6 did.

Results from a happiness survey

happiness.survey <- data.frame(

"participant.id" = c(1, 2, 4, 5, 6),

"happiness.score" = c(20, 40, 50, 90, 53))

Here’s the happiness survey data
participant.id happiness.score

1 20

2 40

4 50

5 90

6 53

Now, we’d like to combine these data into one data frame so that
the two survey scores for each participant are contained in one object.
To do this, use merge().

For more details on merge(), check out
the help menu

Open Help menu for merge()
?merge

merge()

x, y

Two dataframes to be merged

by

A string vector of 1 or more columns to match the data by. For ex-
ample, by = "id" will combine columns that have matching values
in a column called "id". by = c("last.name", "first.name") will
combine columns that have matching values in both "last.name"

and "first.name"

all A logical value indicating whether or not to include rows with
non-matching values of by.

When you merge two dataframes, the result is a new dataframe

118 yarrr! the pirate’s guide to r

that contains data from both dataframes. The key argument in
merge() is by. The by argument specifies how rows should be
matched during the merge. Usually, this will be something like
an name, id number, or some other unique identifier.

Let’s combine our risk and happiness survey using merge(). Be-
cause we want to match rows by the participant.id column, we’ll
specify by = "participant.id". Additionally, because we want to
include rows with potentially non-matching values, we’ll include all

= TRUE

Combine the risk and happiness surveys by matching participant.id

combined.survey <- merge(x = risk.survey,

y = happiness.survey,

by = "participant.id",

all = TRUE)

Here’s the result!

combined.survey

participant.id risk.score happiness.score

1 1 3 20

2 2 4 40

3 3 5 NA

4 4 3 50

5 5 1 90

6 6 NA 53

You may ask yourself: Why are there NA values in the rows? The
reason is because participant 3 did not complete the happiness
survey, and participant 6 did not complete the original risk survey.
When R tried to combine these columns, it returned all values of
participant.id that it found in either dataframe (this is what the
argument all = TRUE means), but only returned the survey data that
it could find.

For the rest of the chapter, we’ll cover data aggregation functions.
These functions allow you to quickly and easily calculate aggregated
summary statistics over groups of data in a data frame. For example,
you can use them to answer questions such as "What was the mean
crew age for each ship?", or "What percentage of participants com-
pleted an attention check for each study condition?" We’ll start by
going over the aggregate() function.

8: advanced dataframe manipulation 119

aggregate() For more details on aggregate(), check
out the help menu

Open Help menu for aggregate()
?aggregate

The first aggregation function we’ll cover is aggregate(). Aggregate
allows you to easily answer questions in the form: "What is the value
of the function FUN applied to a dependent variable dv at each level of
one (or more) independent variable(s) iv?

General structure of aggregate()

aggregate(formula = dv ~ iv, # dv is the data, iv is the group

FUN = fun, # The function you want to apply

data = df) # The dataframe object containing dv and iv

aggregate()

formula

A formula in the form y ∼ x1 + x2 + ... where y is the depen-
dent variable, and x1, x2... are the independent variables. For
example, salary ∼ sex + age will aggregate a salary column at
every unique combination of sex and age

FUN

A function that you want to apply to y at every level of the inde-
pendent variables. E.g.; mean, or max.

data

The dataframe containing the variables in formula

subset

A subset of data to analyze. For example, subset(sex == "f" &

age > 20) would restrict the analysis to females older than 20. You
can ignore this argument to use all data.

The function aggregate() takes three arguments, a formula in
the form y ∼ x1 + x2 + ... defining the dependent (Y) and one
or more independent variables (x1, x2, ...), a function (FUN), and a
dataframe (data). When you execute aggregate(y ∼ x1 + x2 + ...,

data, FUN), R will apply the input function (FUN) to the dependent
variable (Y) separately for each level(s) of the independent variable(s)
(x1, x2, ...) and then print the result.

Let’s give aggregate() a whirl. No...not a whirl...we’ll give it a
spin. Definitely a spin. We’ll use aggregate() on the ToothGrowth

dataset to answer the question “What is the mean tooth length for

120 yarrr! the pirate’s guide to r

each supplement?" For this question, we’ll set the value of the depen-
dent variable Y to len, x1 to supp, and FUN to mean

Calculate the mean tooth length (DV) for

EVERY value of supp (IV)

aggregate(formula = len ~ supp, # DV is len, IV is supp

FUN = mean, # Calculate the mean of each group

data = ToothGrowth) # dataframe is ToothGrowth

supp len

1 OJ 20.7

2 VC 17.0

As you can see, the aggregate() function has returned a dataframe
with a column for the independent variable (supp), and a column for
the results of the function mean applied to each level of the indepen-
dent variable. The result of this function is the same thing we’d get
by manually indexing each level of supp individually.

Combine aggregate() with subset()

If you want to aggregate statistics for a subset of a dataframe, just
subset the dataframe in the data argument with the subset() func-
tion:

Calculate the median tooth length

for EVERY value of SUPP

ONLY for dose > .5

aggregate(formula = len ~ supp,

FUN = median,

data = subset(x = ToothGrowth,

subset = dose > .5))

You can also include multiple independent variables in the for-
mula argument to aggregate(). For example, let’s use aggregate()

to now get the median value of len for all combinations of both supp

and dose (the amount of the supplement):

Calculate the median tooth length

for every combination of supp AND dose

aggregate(formula = len ~ supp + dose,

FUN = median,

data = ToothGrowth)

8: advanced dataframe manipulation 121

supp dose len

1 OJ 0.5 12.25

2 VC 0.5 7.15

3 OJ 1.0 23.45

4 VC 1.0 16.50

5 OJ 2.0 25.95

6 VC 2.0 25.95

Our new result now shows us the median length for all combina-
tions of both supplement (supp) and dose.

You can even use aggregate() to evaluate functions that return
more than one value. For example, the summary() function returns
several summary statistics from a vector. Let’s use the summary()

function in aggregate() to calculate several summary statistics for
each combination of supp and dose:

Calculate summary statistics of tooth length

for every combination of supp AND dose

aggregate(formula = len ~ supp + dose,

FUN = summary,

data = ToothGrowth)

supp dose len.Min. len.1st Qu. len.Median len.Mean len.3rd Qu. len.Max.

1 OJ 0.5 8.20 9.70 12.20 13.20 16.20 21.50

2 VC 0.5 4.20 5.95 7.15 7.98 10.90 11.50

3 OJ 1.0 14.50 20.30 23.50 22.70 25.60 27.30

4 VC 1.0 13.60 15.30 16.50 16.80 17.30 22.50

5 OJ 2.0 22.40 24.60 26.00 26.10 27.10 30.90

6 VC 2.0 18.50 23.40 26.00 26.10 28.80 33.90

While aggregate() is good for calculating summary statistics
for a single dependent variable, it can’t handle multiple dependent
variables. For example, if you wanted to calculate summary statistics
for multiple dependent variables in a dataset, you’d need to execute
an aggregate() command for each dependent variable, and then
combine the results into a single dataframe. Thankfully, a recently
released R package called dplyr makes this process very simple!

122 yarrr! the pirate’s guide to r

dplyr
There’s a nice YouTube video

from DataSchool covering dplyr at
https://goo.gl/UY2AE1

The dplyr package is a relatively new R package that allows you to
do all kinds of analyses quickly and easily. It is especially useful for
creating tables of summary statistics across specific groups of data.
In this section, we’ll go over a very brief overview of how you can
use dplyr to easily do grouped aggregation. Just to be clear - you can
use dplyr to do everything the aggregate() function does and much
more! However, this will be a very brief overview and I strongly
recommend you look at the help menu for dplyr for additional
descriptions and examples.

To use the dplyr package. You first need to load it24: 24 If the dplyr package isn’t in-
stalled on your computer, you’ll
need to install it by running
install.packages("dplyr").library(dplyr)

Programming with dplyr looks a lot different than programming
in standard R. dplyr works by combining objects (dataframes and
columns in dataframes), functions (mean, median, etc.), and verbs
(special commands in dplyr). In between these commands is a new
operator called the pipe which looks like this: %>%. The pipe simply
tells R that you want to continue executing some functions or verbs
on the object you are working on. You can think about this pipe as
meaning ’and then...’

The pipe operator %>% in dplyr
is used to link multiple arguments
sequentially. You can think of %>% as
meaning “and then...”To aggregate data with dplyr, your code will look something like

the following code. In this example, assume that the dataframe you
want to summarize is called my.df, the variable you want to group
the data by called grouping.column, and the columns you want to
aggregate are called col.a, col.b and col.c

my.df %>% # Specify original dataframe

filter(iv3 > 30) %>% # Filter condition

group_by(iv1, iv2) %>% # Grouping variable(s)

summarise(

a = mean(col.a), # calculate mean of column col.a in my.df

b = sd(col.b), # calculate sd of column col.b in my.df

c = max(col.c)) # calculate max on column col.c in my.df, ...

When you use dplyr, you write code that sounds like: "The origi-
nal dataframe is XXX, now filter the dataframe to only include rows
that satisfy the conditions YYY, now group the data at each level of
the variable(s) ZZZ, now summarize the data and calculate summary
functions XXX..."

Let’s start with an example: Let’s create a dataframe of aggregated
data from the pirates dataset. I’ll filter the data to only include
pirates who wear a headband. I’ll group the data according to the

8: advanced dataframe manipulation 123

columns sex and college. I’ll then create several columns of different
summary statistic of some data across each grouping. To create this
aggregated data frame, I will use the new function group_by and
the verb summarise. I will assign the result to a new dataframe called
pirates.agg:

The output from our pirates.agg code:

Source: local data frame [6 x 5]
Groups: sex [?]
##
sex college age.mean tat.med n
<chr> <chr> <dbl> <dbl> <int>
1 female CCCC 26.0 10 206
2 female JSSFP 33.8 10 203
3 male CCCC 23.4 10 358
4 male JSSFP 31.9 10 85
5 other CCCC 24.8 10 24
6 other JSSFP 32.0 12 11

pirates.agg <- pirates %>% # Start with the pirates dataframe

filter(headband == "yes") %>% # Only pirates that wear hb

group_by(sex, college) %>% # Group by these variables

summarise(# Set up summary statistics

age.mean = mean(age), # Define first summary...

tat.med = median(tattoos), # you get the idea...

n = n() # How many are in each group?

) # End

As you can see from the output on the right, our final object
pirates.agg is the aggregated dataframe we want which aggregates
all the columns we wanted for each combination of sex and college

One key new function here is n(). This function is specific to dplyr
and returns a frequency of values in a summary command.

Let’s do a more complex example where we combine multiple
verbs into one chunk of code. We’ll aggregate data from the movies
dataframe.

movies %>% # From the movies dataframe...
filter(genre != "Horror" & time > 50) %>% # Select only these rows
group_by(rating, sequel) %>% # Group by rating and sequel
summarise(#

frequency = n(), # How many movies in each group?
budget.mean = mean(budget, na.rm = T), # Mean budget?
revenue.mean = mean(revenue.all), # Mean revenue?
billion.p = mean(revenue.all > 1000)) # Percent of movies with revenue > 1000?

Source: local data frame [14 x 6]
Groups: rating [?]
##
rating sequel frequency budget.mean revenue.mean billion.p
<chr> <int> <int> <dbl> <dbl> <dbl>
1 G 0 59 41.225 233.5 0.00000
2 G 1 12 92.917 357.2 0.08333
3 NC-17 0 2 3.750 18.5 0.00000
4 Not Rated 0 84 1.739 55.5 0.00000
5 Not Rated 1 12 0.667 66.1 0.00000
6 PG 0 312 51.784 190.6 0.00962
7 PG 1 62 77.210 371.7 0.01613
8 PG-13 0 645 52.093 167.7 0.00620
9 PG-13 1 120 124.164 523.8 0.11667
10 R 0 623 31.385 109.1 0.00000
11 R 1 42 58.250 226.2 0.00000
12 <NA> 0 86 1.647 33.7 0.00000
13 <NA> 1 15 5.507 48.1 0.00000
14 <NA> NA 11 0.000 34.1 0.00000

124 yarrr! the pirate’s guide to r

As you can see, our result is a dataframe with 14 rows and 6

columns. The data are summarized from the movie dataframe, only
include values where the genre is not Horror and the movie length is
longer than 50 minutes, is grouped by rating and sequel, and shows
several summary statistics.

We’ve only scratched the surface of what you can do with dplyr.
For more tips, check out the dplyr vignette at https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html.
Or open it in RStudio by running the following command

Open the dplyr introduction in R

vignette("introduction", package = "dplyr")

Additional Tips

• To easily calculate means (or sums) across all rows or columns in
a matrix or dataframe, use rowMeans(), colMeans(), rowSums() or
colSums(). For example: These functions (rowMeans() etc.) only

work on numeric columns. If you try to
apply them to non-numeric data, you’ll
receive an error

Some numeric exam data

exam <- data.frame("q1" = c(1, 5, 2, 3, 2),

"q2" = c(8, 10, 9, 8, 7),

"q3" = c(3, 7, 4, 6, 4))

Get means across columns

colMeans(exam)

q1 q2 q3

2.6 8.4 4.8

Get means across rows

rowMeans(exam)

[1] 4.00 7.33 5.00 5.67 4.33

• There is an entire class of apply functions in R that apply functions
to groups of data. One common one is tapply(), sapply() and

lapply() which work very similarly to aggregate(). For example,
you can calculate the average length of movies by genre with
tapply() as follows.

with(movies, tapply(X = time,

INDEX = genre,

FUN = mean,

na.rm = T))

8: advanced dataframe manipulation 125

Test your R might!: Mmmmm...caffeine

You’re in charge of analyzing the results of an experiment testing the
effects of different forms of caffeine on a measure of performance. In
the experiment, 100 participants were given either Green tea or coffee,
in doses of either 1 or 5 servings. They then performed a cognitive
test where higher scores indicate better performance.

The data are stored in a tab–delimited dataframe at the following
link: https://dl.dropboxusercontent.com/u/7618380/datasets/caffeinestudy.txt

1. Load the dplyr library

2. Load the dataset from https://dl.dropboxusercontent.com/u/7618380/datasets/caffeinestudy.txt
as a new dataframe called caffeine.

3. Calculate the mean age for each gender

4. Calculate the mean age for each drink

5. Calculate the mean age for each combined level of both gender
and drink

6. Calculate the median score for each age

7. For men only, calculate the maximum score for each age

8. Create a dataframe showing, for each level of drink, the mean,
median, maximum, and standard deviation of scores.

9. Only for females above the age of 20, create a table showing, for
each combined level of drink and cups, the mean, median, max-
imum, and standard deviation of scores. Also include a column
showing how many people were in each group.

9: Plotting: Part 1

Sammy Davis Jr. was one of the greatest American performers of all
time. If you don’t know him already, Sammy was an American enter-
tainer who lived from 1925 to 1990. The range of his talents was just
incredible. He could sing, dance, act, and play multiple instruments
with ease. So how is R like Sammy Davis Jr? Like Sammy Davis Jr.,
R is incredibly good at doing many different things. R does data
analysis like Sammy dances, and creates plot like Sammy sings. If
Sammy and R did just one of these things, they’d be great. The fact
that they can do both is pretty amazing.

Figure 44: The great Sammy Davis
Jr. Do yourself a favor and spend
an evening watching videos of him
performing on YouTube. Image used
entirely without permission.

How does R manage plots?

When you evaluate plotting functions in R, R can build the plot in
different locations. The default location for plots is in a temporary
plotting window within your R programming environment. In
RStudio, plots will show up in the Plot window (typically on the
bottom right hand window pane). In Base R, plots will show up in a
Quartz window.

You can think of these plotting locations as canvases. You only
have one canvas active at any given time, and any plotting command
you run will put more plotting elements on your active canvas.
Certain high–level plotting functions like plot() and hist() create
brand new canvases, while other low--level plotting functions like
points() and segments() place elements on top of existing canvases.

Don’t worry if that’s confusing for now – we’ll go over all the
details soon.

Let’s start by looking at a basic scatterplot in R using the plot()

function. When you execute the following code, you should see a
plot open in a new window:

A basic scatterplot

plot(x = 1:10,

y = 1:10,

128 yarrr! the pirate’s guide to r

xlab = "X Axis label",

ylab = "Y Axis label",

main = "Main Title"

)

2 4 6 8 10

2
4

6
8

10

Main Title

X Axis label

Y
 A

xi
s

la
be

l

Let’s take a look at the result. We see an x–axis, a y–axis, 10 data
points, an x–axis label, a y–axis label, and a main plot title. Some
of these items, like the labels and data points, were entered as ar-
guments to the function. For example, the main arguments x and
y are vectors indicating the x and y coordinates of the (in this case,
10) data points. The arguments xlab, ylab, and main set the labels to
the plot. However, there were many elements that I did not specify
– from the x and y axis limits, to the color of the plotting points. As
you’ll discover later, you can change all of these elements (and many,
many more) by specifying additional arguments to the plot() func-
tion. However, because I did not specify them, R used default values –
values that R uses unless you tell it to use something else.

For the rest of this chapter, we’ll go over the main plotting func-
tions, along with the most common arguments you can use to cus-
tomize the look of your plot.

9: plotting: part 1 129

Color basics

Most plotting functions have a color argument (usually col) that
allows you to specify the color of whatever your plotting. There are
many ways to specify colors in R, let’s start with the easiest ways.

Specifying simple colors

col = "red", col = "blue", col = "lawngreen" (etc.)

The easiest way to specify a color is to enter its name as a string.
For example col = "red" is R’s default version of the color red. Of
course, all the basic colors are there, but R also has tons of quirky
colors like snow, papayawhip and lawngreen. To see all color names
in R, run the code

Here are some random colors that are
stored in R, try running colors() to see
them all!

gold3 navajowhite3 gray48 grey3 green4

grey27 orangered1 firebrick4 navajowhite1 ivory3

gray57 gray90 beige grey51 tan4

white cyan grey21 gray47 tan

indianred1 mediumpurple lightpink3 maroon4 cyan3

colors() # Show me all the color names!

col = gray(level, alpha)

gray(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The gray() function takes two arguments, level and alpha, and
returns a shade of gray. For example, gray(level = 1) will return
white. The alpha argument specifies how transparent to make
the color on a scale from 0 (completely transparent), to 1 (not
transparent at all). The default value for alpha is 1 (not transparent
at all.)

Transparent Colors with transparent()

I don’t know about you, but I almost always find transparent colors
to be more appealing than solid colors. Not only do they help you
see when multiple points are overlapping, but they’re just much nicer
to look at. Just look at the overlapping circles in the plot below.

130 yarrr! the pirate’s guide to r

Standard Transparent

Unfortunately, as far as I know, base-R does not make it easy
to make transparent colors. Thankfully, there is a function in the
yarrr package called transparent that makes it very easy to make
any color transparent. To use it, just enter the original color as the
main argument (orig.col), then enter how transparent you want to
make it (from 0 to 1) as the second argument (trans.val). You can
either save the transparent color as a new color object, or use the
function directly in a plotting function like I do in the scatterplot in
the margin.

Plot with Standard Colors
plot(x = pirates$height,

y = pirates$weight,
col = "blue",
pch = 16,
main = "Standard Colors")

140 160 180 200

40
60

80
10

0

Standard Colors

pirates$height

pi
ra

te
s$

w
ei

gh
t

Plot with Transparent olors

library(yarrr) # Load the yarrr package
to get the transparent() function

plot(x = pirates$height,
y = pirates$weight,
col = transparent("blue", trans.val = .9),
pch = 16,
main = "Transparent Colors")

140 160 180 200

40
60

80
10

0

Transparent Colors

pirates$height

pi
ra

te
s$

w
ei

gh
t

library(yarrr) # load the yarrr package

To get the transparent() function

Make red.t.5, a transparent version of red

red.t.5 <- transparent(orig.col = "red",

trans.val = .5)

Make blue.t.5, a transparent version of blue

blue.t.5 <- transparent(orig.col = "blue",

trans.val = .5)

Later on in the book, we’ll cover more advanced ways to come
up with colors using color palettes (using the RColorBrewer pack-
age or the piratepal() function in the yarrr package) and func-
tions that generate shades of colors based on numeric data (like the
colorRamp2() function in the circlize package).

9: plotting: part 1 131

High vs. low-level plotting commands

There are two general types of plotting commands in R: high and
low-level. High level plotting commands, like plot(), hist() and
pirateplot() create entirely new plots. Within these high level
plotting commands, you can define the general layout of the plot -
like the axis limits and plot margins.

Low level plotting commands, like points(), segments(), and
text() add elements to existing plots. These low level commands
don’t change the overall layout of a plot - they just add to what
you’ve already created. Once you are done creating a plot, you can
export the plot to a pdf or jpeg using the pdf() or jpeg() functions.
Or, if you’re creating documents in Markdown or Latex, you can add
your plot directly to your document.

Plotting arguments

Most plotting functions have tons of optional arguments (also called
parameters) that you can use to customize virtually everything in a
plot. To see all of them, look at the help menu for par by executing
?par. However, the good news is that you don’t need to specify all
possible parameters you create a plot. Instead, there are only a few
critical arguments that you must specify - usually one or two vectors
of data. For any optional arguments that you do not specify, R will
use either a default value, or choose a value that makes sense based
on the data you specify.

In the following examples, I will to cover the main plotting param-
eters for each plotting type. However, the best way to learn what you
can, and can’t, do with plots, is to try to create them yourself!

I think the best way to learn how to create plots is to see some
examples. Let’s start with the main high-level plotting functions.

132 yarrr! the pirate’s guide to r

Scatterplot: plot()

The most common high-level plotting function is plot(x, y). The
plot() function makes a scatterplot from two vectors x and y, where
the x vector indicates the x (horizontal) values of the points, and the y
vector indicates the y (vertical) values.

Here are some of the main arguments
to plot()

x, y Vectors specifying the x and y
values of the points

type Type of plot. "l" means lines, "p"
means points, "b" means lines and
points, "n" means no plotting

main Label for the plot title

xlab Label for the x-axis

ylab Labels for the y-axis

xlim Limits to the x-axis. For example,
xlim = c(0, 100) will set the
minimum and maximum of the
x-axis to 0 and 100.

ylim Limits to the y-axis. For example,
ylim = c(50, 200) will set the
minimum and maximum of the
y-axis to 50 and 200.

pch An integer indicating the type of
plotting symbols (see ?points and
section below), or a string specifying
symbols as text. For example,
pch = 21 will create a two-color
circle, while pch = "P" will plot the
character “P”. To see all the different
symbol types, run ?points.

col Main color of the plotting symbols.
For example col = "red" will create
red symbols.

bg Color of the background of two-
color symbols 21 through 25. For
example pch = 21, bg = "blue"
will the background of the two-color
circle to Blue.

cex A numeric vector specifying the size
of the symbols (from 0 to Inf). The
default size is 1. cex = 2 will make
the points very large, while cex =
.5 will make them very small.

plot(x = 1:10, # x-coordinates

y = 1:10, # y-coordinates

type = "p", # Draw points (not lines)

main = "My First Plot",

xlab = "This is the x-axis label",

ylab = "This is the y-axis label",

xlim = c(0, 11), # Min and max values for x-axis

ylim = c(0, 11), # Min and max values for y-axis

col = "blue", # Color of the points

pch = 16, # Type of symbol (16 means Filled circle)

cex = 1 # Size of the symbols

)

0 2 4 6 8 10

0
2

4
6

8
10

My First Plot

This is the x−axis label

T
hi

s
is

 th
e

y−
ax

is
 la

be
l

Aside from the x and y arguments, all of the arguments are op-
tional. If you don’t specify a specific argument, then R will use a

9: plotting: part 1 133

default value, or try to come up with a value that makes sense. For
example, if you don’t specify the xlim and ylim arguments, R will set
the limits so that all the points fit inside the plot.

Symbol types: pch

When you create a plot with plot() (or points with points()), you
can specify the type of symbol with the pch argument. You can
specify the symbol type in one of two ways: with an integer, or with
a string. If you use a string (like "p"), R will use that text as the
plotting symbol. If you use an integer value, you’ll get the symbol
that correspond to that number. See Figure 45 for all the symbol
types you can specify with an integer.

Symbols differ in their shape and how they are colored. Symbols 1

through 14 only have borders and are always empty, while symbols
15 through 20 don’t have a border and are always filled. Symbols 21

through 25 have both a border and a filling. To specify the border
color or background for symbols 1 through 20, use the col argument.
For symbols 21 through 25, you set the color of the border with col,
and the color of the background using bg

par(mar = c(1, 1, 3, 1))

plot(x = rep(1:5 + .1, each = 5),
y = rep(5:1, times = 5),
pch = 1:25,
xlab = "", ylab = "", xaxt = "n", yaxt = "n",
xlim = c(.5, 5.5),
ylim = c(0, 6),
bty = "n", bg = "gray", cex = 1.4,
main = "pch = "
)

text(x = rep(1:5, each = 5) - .35,
y = rep(5:1, times = 5),
labels = 1:25, cex = 1.2
)

pch =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 45: The symbol types associated
with the pch plotting parameter.

Let’s look at some different symbol types in action:

pch = 2,
col = 'blue'

pch = 16,
col = 'orchid2'

pch = 21,
col = 'black',

bg = 'orangered2

pch = 25,
col = 'pink3',
bg = 'plum3

134 yarrr! the pirate’s guide to r

Histogram: hist()

Histograms are the most common way to plot unidimensional nu-
meric data. To create a histogram we’ll use the hist() function. The
main argument to hist() is a x, a vector of numeric data. If you want
to specify how the histogram bins are created, you can use the breaks

argument. To change the color of the border or background of the
bins, use col and border:

Let’s create a histogram of the weights in the ChickWeight dataset:

hist(x = ChickWeight$weight,
main = "Fancy Chicken Weight Histogram",
xlab = "Weight",
ylab = "Frequency",
breaks = 20, # 20 Bins
xlim = c(0, 500),
col = "papayawhip", # Filling Color
border = "hotpink") # Border Color

Fancy Chicken Weight Histogram

Weight

F
re

qu
en

cy

0 100 200 300 400 500

0
20

40
60

80
10

0

Figure 46: Fancy histogram

You can plot two histograms in one plot
by adding the add = T argument to the
second hist() function:

hist(x = ChickWeight$weight[ChickWeight$Diet == 1],
main = "Two Histograms in one",
xlab = "Weight",
ylab = "Frequency",
breaks = 20,
xlim = c(0, 500),
col = gray(0, .5))

hist(x = ChickWeight$weight[ChickWeight$Diet == 2],
breaks = 30,
add = TRUE, # Add plot to previous one!
col = gray(1, .5))

Two Histograms in one

Weight

F
re

qu
en

cy

0 100 200 300 400 500

0
5

10
15

20
25

30
35

Figure 47: Plotting two histograms in
the same plot using the add = TRUE
argument to the second plot.

hist(x = ChickWeight$weight,

main = "Chicken Weights",

xlab = "Weight",

xlim = c(0, 500))

Chicken Weights

Weight

F
re

qu
en

cy

0 100 200 300 400 500

0
50

10
0

15
0

20
0

We can get more fancy by adding additional arguments like
breaks = 20 to force there to be 20 bins, and col = "papayawhip"

and bg = "hotpink" to make it a bit more colorful (see the margin
figure 46)

If you want to plot two histograms on the same plot, for example,
to show the distributions of two different groups, you can use the add

= T argument to the second plot. See Figure 47 to see this in action.

9: plotting: part 1 135

Barplot: barplot()

A barplot is good for showing summary statistics for different
groups. The primary argument to a barplot is height: a vector of
numeric values which will generate the height of each bar. To add
names below the bars, use the names.arg argument. For additional ar-
guments specific to barplot(), look at the help menu with ?barplot:

Step 1: calculate the average weight by time
avg.weights <- aggregate(weight ~ Time,

data = ChickWeight,
FUN = mean)

Step 2: Plot the result
barplot(height = avg.weights$weight,

names.arg = avg.weights$Time,
xlab = "Week",
ylab = "Average Weight",
main = "Average Chicken Weights by Time",
col = "yellow",
border = "gray")

0 2 4 6 8 10 12 14 16 18 20 21

Average Chicken Weights by Time

Week

A
ve

ra
ge

 W
ei

gh
t

0
50

10
0

15
0

20
0

Calculate and plot average weights for Diet 2
d2.weights <- aggregate(weight ~ Time,

data = ChickWeight,
subset = Diet == 2,
FUN = mean)

barplot(height = d2.weights$weight,
names.arg = d2.weights$Time,
xlab = "Week",
ylab = "Average Weight",
main = "Average Chicken Weights by Time",
col = transparent("green", .5),
border = NA)

Do the same for Diet 1 and add to existing plot
d1.weights <- aggregate(weight ~ Time,

data = ChickWeight,
subset = Diet == 1,
FUN = mean)

barplot(height = d1.weights$weight,
add = T, # Add to existing plot!
col = transparent("blue", .5),
border = NA)

0 2 4 6 8 10 12 14 16 18 20 21

Average Chicken Weights by Time

Week

A
ve

ra
ge

 W
ei

gh
t

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

Figure 48: Stacked barplots by adding
an additional barplot with the add = T
argument.

barplot(height = 1:5, # A vector of heights

names.arg = c("G1", "G2", "G3", "G4", "G5"), # A vector of names

main = "Example Barplot",

xlab = "Group",

ylab = "Height")

G1 G2 G3 G4 G5

Example Barplot

Group

H
ei

gh
t

0
1

2
3

4
5

Of course, you should plot more interesting data than just a vector
of integers with a barplot. In the margin figure, I create a barplot
with the average weight of chickens for each time point with yel-
low bars. If you want to plot different colored bars from different
datasets, create one normal barplot, then create a second barplot with
the add = T argument. In Figure 48, I plotted the average weights for
chickens on Diets 1 and 2 separately on the same plot.

136 yarrr! the pirate’s guide to r

Clustered barplot

If you want to create a clustered barplot, with different bars for
different groups of data, you can enter a matrix as the argument to
height. R will then plot each column of the matrix as a separate set
of bars. For example, let’s say I conducted an experiment where I
compared how fast pirates can swim under four conditions: Wearing
clothes versus being naked, and while being chased by a shark versus
not being chased by a shark. Let’s say I conducted this experiment
and calculated the following average swimming speed:

Naked Clothed
No Shark 2.1 1.5
Shark 3.0 3.0

Table 1: Mean Swimming times (in
meters / second)

I can represent these data in a matrix as follows. In order for the
final barplot to include the condition names, I’ll add row and column
names to the matrix with colnames() and rownames()

swim.data <- cbind(c(2.1, 3), # Naked Times

c(1.5, 3)) # Clothed Times

colnames(swim.data) <- c("Naked", "Clothed")

rownames(swim.data) <- c("No Shark", "Shark")

Here’s how the final matrix looks:

swim.data

Naked Clothed

No Shark 2.1 1.5

Shark 3.0 3.0

Now, when I enter this matrix as the height argument to barplot(),
I’ll get multiple bars.

barplot(height = swim.data,

beside = T, # Put the bars next to each other

legend.text = T, # Add a legend

col = c(transparent("green", .7),

transparent("red", .7)),

main = "Swimming Speed Experiment",

ylab = "Speed (in meters / second)",

xlab = "Clothing Condition",

ylim = c(0, 3.5))

9: plotting: part 1 137

Naked Clothed

No Shark
Shark

Swimming Speed Experiment

Clothing Condition

S
pe

ed
 (

in
 m

et
er

s
/ s

ec
on

d)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

138 yarrr! the pirate’s guide to r

The Pirate Plot: pirateplot()

A pirateplot is a new type of plot written just for this book! The
pirateplot is an easy-to-use function that, unlike barplots and box-
plots, can easily show raw data, descriptive statistics, and inferential
statistics in one plot. Her are the four key elements in a pirateplot:

Figure 49: 4 main elements of a pi-
rateplot.

The two main arguments to pirateplot() are formula and data. In
formula, you specify plotting variables in the form dv ∼ iv, where
dv is the name of the dependent variable, and iv is the name of the
independent variable. In data, you specify the name of the dataframe
object where the variables are stored. The pirateplot() function is part of the

yarrr package. So to use it, you’ll first
need to install the yarrr package

9: plotting: part 1 139

Let’s create a pirateplot of the ChickWeight data. I’ll set the depen-
dent variable to weight, and the independent variable to Diet.

Here are some of the main arguments
to pirateplot()

formula A formula in the form dv ∼ iv1
+ iv2 where where dv is the name
of the dependent variable, and
iv1 and iv2 are the name(s) of the
independent variable(s). Up to two
independent variables can be used.

data A dataframe containing the depen-
dent and independent variables.

pal A string indicating the color palette
of the plot. Can be a single color,
or the name of a palette in the
piratepal() function (e.g.; "basel",
"google", "xmen")

theme An integer indicating what plotting
theme to use. As of yarrr version
v0.1.2, versions 0, 1, 2, and 3 are
supported)

library("yarrr")

pirateplot(formula = weight ~ Diet, # dv is weight, iv is Diet

data = ChickWeight,

main = "pirateplot of chicken weights",

xlab = "Diet",

ylab = "Weight")

pirateplot of chicken weights

Diet

W
ei

gh
t

0

50

100

150

200

250

300

350

400

1 2 3 4

As you can see, the pirateplot shows us the complete distribution
of data for each diet. In addition, because we have inference bands
showing 95% Highest Density Intervals (HDIs), we can make inferen-
tial comparisons between groups. For example, because the intervals
between Diets 1 and 3 do not overlap, we can confidently conclude
that Diet 3 lead to credibly higher weights compared to Diet 1.

140 yarrr! the pirate’s guide to r

The pirateplot function contains a few different plotting themes.
To change the theme, use the theme argument. Here is a pirateplot
using theme = 2

pirateplot(formula = weight ~ Diet,
data = ChickWeight,
pal = "black")

Error in col2rgb(orig.col):
invalid color name ’pal’

Diet

w
ei

gh
t

0

50

100

150

200

250

300

350

400

pirateplot(formula = weight ~ Diet,
data = ChickWeight,
pal = "pony")

Diet

w
ei

gh
t

0

50

100

150

200

250

300

350

400

1 2 3 4

pirateplot(formula = weight ~ Diet, # dv is weight, iv is Diet

data = ChickWeight,

theme = 2,

main = "pirateplot theme 2",

xlab = "Time",

ylab = "Weight",

gl.col = "gray") # Add gray gridlines

pirateplot theme 2

Time

W
ei

gh
t

0

50

100

150

200

250

300

350

400

1 2 3 4

You can easily change the colors in a pirateplot with the pal argu-
ment. Setting pal = ’black’ will create a black and white pirateplot.
Or, setting pal = ’pony’ will use the My Little Pony theme. See the
plots on the right margin for examples.

To see all the different palettes you can
use in the piratepal() function, run the
following code:

piratepal(palette = "all",
plot.result = TRUE)

Here are all of the pirate palettes

Transparency is set to 0

basel

pony

xmen

southpark

google

eternal

evildead

usualsuspects

ohbrother

appletv

brave

bugs

cars

nemo

rat

up

espresso

ipod

info

info2

You can include up to three independent variables in the formula
argument to the piratepal() function to create a souped up clustered
barplot. For example, the ToothGrowth dataframe measures the length
of Guinea Pig’s teeth based on different supplements and different
doses. We can plot both as follows:

9: plotting: part 1 141

Plotting data from two IVs in pirateplot

pirateplot(formula = len ~ dose + supp, # Two IVs

data = ToothGrowth,

theme = 2,

gl.col = "gray",

xlab = "Dose",

ylab = "Tooth Length",

main = "ToothGrowth Data")

ToothGrowth Data

To
ot

h
Le

ng
th

0

5

10

15

20

25

30

35

0.5 1 2 0.5 1 2

supp

dose

OJ VC

There are many additional optional arguments to pirateplot() –
for example, you can use different color palettes with the pal argu-
ment or change how transparent different elements are with inf.f.o,

bean.f.o and others. To see them all, look at the help menu with
?pirateplot.

142 yarrr! the pirate’s guide to r

Low-level plotting functions

Once you’ve created a plot with a high-level plotting function, you
can add additional elements with low-level functions. You can add
data points with points(), reference lines with abline(), text with
text(), and legends with legend().

Starting with a blank plot

Before you start adding elements with low-level plotting functions,
it’s useful to start with a blank plotting space. To do this, execute the
plot() function, but use the type = "n" argument to tell R that you
don’t want to plot anything yet. Once you’ve created a blank plot,
you can additional elements with low-level plotting commands.

Figure 50: Ahhhh....a fresh blank canvas
waiting for low-level plotting functions.

plot(x = 1,

xlab = "X Label", ylab = "Y Label",

xlim = c(0, 100), ylim = c(0, 100),

main = "Blank Plotting Canvas",

type = "n")

0 20 40 60 80 100

0
20

40
60

80
10

0

Blank Plotting Canvas

X Label

Y
 L

ab
el

9: plotting: part 1 143

Adding new points to a plot with points()

To add new points to an existing plot, use the points() function.25 25 The points function has many similar
arguments to the plot() function, like
x (for the x-coordinates), y (for the
y-coordinates), and parameters like col
(border color), cex (point size), and pch
(symbol type). To see all of them, look
at the help menu with ?points()

Let’s use points() to create a plot with different symbol types for
different data. I’ll use the pirates dataset and plot the relationship
between a pirate’s age and the number of tattoos he/she has. I’ll
create separate points for male and female pirates:

library(yarrr) # Load the yarrr package (for pirates dataset)

Create the plot with male data

plot(x = pirates$age[pirates$sex == "male"],

y = pirates$tattoos[pirates$sex == "male"],

xlim = c(10, 45), ylim = c(0, 22),

pch = 16,

col = transparent("coral2", trans.val = .2),

xlab = "Age", ylab = "Number of Tattoos",

main = "Pirate Tattoos by Age\nMale vs. Female"

)

Now, I’ll add points for the female data with points:

Add points for female data

points(x = pirates$age[pirates$sex == "female"],

y = pirates$tattoos[pirates$sex == "female"],

pch = 16,

col = transparent("steelblue3", trans.val = .3)

)
Because you can continue adding as
many low-level plotting commands to a
plot as you’d like, you can keep adding
different types or colors of points by
adding additional points() functions.
However, keep in mind that because
R plots each element on top of the
previous one, early calls to points()
might be covered by later calls. So
add the points that you want in the
foreground at the end!

My first plotting command with plot() will create the left-hand
figure below. The second plotting command with points() will add
to the plot and create the right-hand figure below.

10 15 20 25 30 35 40 45

0
5

10
15

20

Pirate Tattoos by Age
Male vs. Female

Age

N
um

be
r

of
 T

at
to

os

10 15 20 25 30 35 40 45

0
5

10
15

20

Pirate Tattoos by Age
Male vs. Female

Age

N
um

be
r

of
 T

at
to

os

144 yarrr! the pirate’s guide to r

Adding straight lines with abline()
plot(x = pirates$weight,

y = pirates$height,
type = "n", main = "Gridlines with abline()")

Add gridlines
abline(h = seq(from = 100, to = 300, by = 10),

v = seq(from = 30, to = 150, by = 10),
lwd = c(.75, .25), col = "gray")

Add points
points(x = pirates$weight,

y = pirates$height,
col = gray(0, .3))

40 60 80 100

14
0

16
0

18
0

20
0

Gridlines with abline()

pirates$weight

pi
ra

te
s$

he
ig

ht

Figure 51: Adding gridlines with
abline()

To add straight lines to a plot, use abline() or segments(). abline()
will add a line across the entire plot, while segments() will add a line
with defined starting and end points.

For example, we can add reference lines to a plot with abline().
In the following plot, I’ll add vertical and horizontal reference lines
showing the means of the variables on the x and y axes:

plot(x = pirates$weight,

y = pirates$height,

main = "Adding reference lines with abline",

pch = 16, col = gray(0, .1))

Add horizontal line at mean height

abline(h = mean(pirates$height))

Add vertical line at mean weight

abline(v = mean(pirates$weight))

40 60 80 100

14
0

16
0

18
0

20
0

Adding reference lines with abline

pirates$weight

pi
ra

te
s$

he
ig

ht

1 2 3 4 5 6

lty = ...

Figure 52: Line types generated from
arguments to lty.

You can use abline() to add gridlines to a plot. To do this, enter
the locations of horizontal lines with the h argument, and vertical
lines with the v argument (See Figure 51):

To change the look of your lines, use the lty argument, which

9: plotting: part 1 145

changes the type of line (see Figure), lwd, which changes its thick-
ness, and col which changes its color

segments()

The segments() function works very similarly to abline() – however,
with the segments() function, you specify the beginning and end
points of the segments. Here, I’ll use segments() to connect two
vectors of data:

0
2

4
6

8
10

Using segments() to connect points

Time

S
co

re

Before After

Figure 53: Connecting points with the
segments function.

Before and after data

before <- c(2.1, 3.5, 1.8, 4.2, 2.4, 3.9, 2.1, 4.4)

after <- c(7.5, 5.1, 6.9, 3.6, 7.5, 5.2, 6.1, 7.3)

Create plotting space and before scores

plot(x = rep(1, length(before)),

y = before,

xlim = c(.5, 2.5),

ylim = c(0, 11),

ylab = "Score",

xlab = "Time",

main = "Using segments() to connect points",

xaxt = "n")

Add after scores

points(x = rep(2, length(after)), y = after)

Now add connections with segments()!

segments(x0 = rep(1, length(before)),

y0 = before,

x1 = rep(2, length(after)),

y1 = after,

col = gray(0, .5))

Add labels

mtext(text = c("Before", "After"),

side = 1, at = c(1, 2), line = 1)

You can see the resulting figure in the margin.

146 yarrr! the pirate’s guide to r

Adding text to a plot with text()

With text(), you can add text to a plot. You can use text() to high-
light specific points of interest in the plot, or to add information (like
a third variable) for every point in a plot. I’ve highlighted some of
the key arguments to text() in Figure 54

Main arguments to text():

• x, y: The location(s) of the text

• labels: The text to plot

• cex: The size of the text

• adj: How should the text be justi-
fied? 0 = left justified, .5 = centered,
1 = right justified

• pos: The position of the text relative
to the x and y coordinates. Values
of 1, 2, 3, and 4 put the text below,
to the left, above, and to the right of
the x-y coordinates respectively.

Figure 54: Main arguments to the
text() function

For example, the following code adds the three words "Put", "Text",
and "Here" at the coordinates (1, 9), (5, 5), and (9, 1) respectively. See
Figure 55 for the plot:

plot(1, xlim = c(0, 10), ylim = c(0, 10), type = "n")

text(x = c(1, 5, 9),

y = c(9, 5, 1),

labels = c("Put", "text", "here")

)

plot(1, xlim = c(0, 10), ylim = c(0, 10), type = "n")

text(x = c(1, 5, 9),
y = c(9, 5, 1),
labels = c("Put", "text", "here")
)

0 2 4 6 8 10

0
2

4
6

8
10

Index

1

Put

text

here

Figure 55: Adding text to a plot. The
characters in the argument to labels
will be plotted at the coordinates
indicated by x and y.

You can do some cool things with text(). I’ll create a scatterplot
of data, and add data labels above each point:

height <- c(156, 175, 160, 172, 159)
weight <- c(65, 74, 69, 72, 66)
id <- c("p1", "p2", "p3", "p4", "p5")

plot(x = height, y = weight,
xlim = c(155, 180), ylim = c(65, 80))

text(x = height, y = weight,
labels = id, pos = 3)

155 160 165 170 175 180

65
70

75
80

height

w
ei

gh
t

p1

p2

p3

p4

p5

9: plotting: part 1 147

When entering text in the labels argument, keep in mind that R
will, by default, plot the entire text in one line. However, if you are
adding a long text string (like a sentence), you may want to separate
the text into separate lines. To do this, add the text "\n" where you
want new lines to start. Look at Figure 56 for an example.

To plot text on separate lines in a plot,
put the tag "\n" between lines.

plot(1, type = "n", main = "The \\n tag",
xlab = "", ylab = "")

Text without \n breaks
text(x = 1, y = 1.3, labels = "Text without \\n", font = 2)
text(x = 1, y = 1.2,

labels = "Haikus are easy. But sometimes they don't make sense. Refrigerator"
)

abline(h = 1, lty = 2)
Text with \n breaks
text(x = 1, y = .92, labels = "Text with \\n", font = 2)
text(x = 1, y = .7,

labels = "Haikus are easy\nBut sometimes they don't make sense\nRefrigerator"
)

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

The \n tag

Text without \n

Haikus are easy. But sometimes they don't make sense. Refrigerator

Text with \n

Haikus are easy
But sometimes they don't make sense

Refrigerator

Figure 56: Using the "\n" tag to plot
text on separate lines.

Combining text and numbers with paste()

A common way to use text in a plot, either in the main title of a
plot or using the text() function, is to combine text with numerical
data. For example, you may want to include the text "Mean = 3.14"
in a plot to show that the mean of the data is 3.14. But how can we
combine numerical data with text? In R, we can do this with the
paste() function:

The paste function will be helpful to you anytime you want to
combine either multiple strings, or text and strings together. For
example, let’s say you want to write text in a plot that says The mean

of these data are XXX, where XXX is replaced by the group mean.
To do this, just include the main text and the object referring to the
numerical mean as arguments to paste():

When you include descriptive statistics
in a plot, you will almost always want
to use the round(x, digits) function
to reduce the number of digits in the
statistic.

data <- ChickWeight$weight

mean(data)

[1] 122

paste("The mean of data is", mean(data)) # No rounding

[1] "The mean of data is 121.818339100346"

paste("The mean of data is", round(mean(data), 2)) # No rounding

[1] "The mean of data is 121.82"

Let’s create a plot with labels using the paste() function. We’ll
plot the chicken weights over time, and add text to the plot specify-
ing the overall mean and standard deviations of weights.

Create the plot

plot(x = ChickWeight$Time,

y = ChickWeight$weight,

col = gray(.3, .5),

pch = 16,

main = "Chicken Weights")

Add text

148 yarrr! the pirate’s guide to r

text(x = 0,

y = 300,

labels = paste("Mean weight = ",

round(mean(ChickWeight$weight), 2),

"\nStandard deviation = ",

round(sd(ChickWeight$weight), 2),

sep = ""),

adj = 0)

0 5 10 15 20

50
15

0
25

0
35

0

Chicken Weights

ChickWeight$Time

C
hi

ck
W

ei
gh

t$
w

ei
gh

t

Mean weight = 121.82
Standard deviation = 71.07

9: plotting: part 1 149

curve()
plot(1, xlim = c(-5, 5), ylim = c(-5, 5),

type = "n", main = "Plotting function lines with curve()",
ylab = "", xlab = "")

abline(h = 0)
abline(v = 0)

require("RColorBrewer")

Loading required package: RColorBrewer

col.vec <- brewer.pal(12, name = "Set3")[4:7]

curve(expr = x^2, from = -5, to = 5,
add = T, lwd = 2, col = col.vec[1])

curve(expr = x^.5, from = 0, to = 5,
add = T, lwd = 2, col = col.vec[2])

curve(expr = sin, from = -5, to = 5,
add = T, lwd = 2, col = col.vec[3])

my.fun <- function(x) {return(dnorm(x, mean = 2, sd = .2))}
curve(expr = my.fun, from = -5, to = 5,

add = T, lwd = 2, col = col.vec[4])

legend("bottomright",
legend = c("x^2", "x^.5", "sin(x)", "dnorm(x, 2, .2"),
col = col.vec[1:4], lwd = 2,
lty = 1, cex = .8, bty = "n"
)

−4 −2 0 2 4

−
4

−
2

0
2

4

Plotting function lines with curve()

x^2
x^.5
sin(x)
dnorm(x, 2, .2

Figure 57: Using curve() to easily
create lines of functions

The curve() function allows you to add a line showing a specific
function or equation to a plot

curve()

expr

The name of a function written as a function of x that returns a
single vector. You can either use base functions in R like expr =

x2, expr = x + 4 - 2, or use your own custom functions such as
expr = my.fun, where my.fun is previously defined (e.g.; my.fun <-

function(x) dnorm(x, mean = 10, sd = 3))

from, to

The starting (from) and ending (to) value of x to be plotted.

add

A logical value indicating whether or not to add the curve to an
existing plot. If add = FALSE, then curve() will act like a high-
level plotting function and create a new plot. If add = TRUE, then
curve() will act like a low-level plotting function.

lty, lwd, col

Additional arguments such as lty, col, lwd, ...

For example, to add the function x2 to a plot from the x-values -10

to 10, you can run the code:

curve(expr = x^2, from = -10, to = 10)

If you want to add a custom function to a plot, you can define the
function and then use that function name as the argument to expr.
For example, to plot the normal distribution with a mean of 10 and
standard deviation of 3, you can use this code:

my.fun <- function(x) {dnorm(x, mean = 10, sd = 3)}

curve(expr = my.fun, from = -10, to 10)

In Figure 57, I use the curve() function to create curves of several
mathematical formulas.

150 yarrr! the pirate’s guide to r

legend()
Generate some random data
female.x <- rnorm(100)
female.y <- female.x + rnorm(100)
male.x <- rnorm(100)
male.y <- male.x + rnorm(100)

Create plot with data from females
plot(female.x, female.y, pch = 16, col = 'blue',

xlab = "x", ylab = "y", main = "Adding a legend with legend()"
)

Add data from males
points(male.x, male.y, pch = 16, col = 'orange')

Add legend
legend("bottomright",

legend = c("Females", "Males"),
col = c('blue', 'orange'),
pch = c(16, 16),
bg = "white"
)

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Adding a legend with legend()

x

y

Females
Males

Figure 58: Creating a legend labeling
the symbol types from different groups

The last low-level plotting function that we’ll go over in detail is
legend() which adds a legend to a plot. This function has the follow-
ing arguments

legend()

x, y

Coordinates of the legend - for example, x = 0, y = 0 will put the
text at the coordinates (0, 0). Alternatively, you can enter a string
indicating where to put the legend (i.e.; "topright", "topleft"). For
example, "bottomright" will always put the legend at the bottom
right corner of the plot.

labels

A string vector specifying the text in the legend. For example,
legend = c("Males, "Females") will create two groups with
names Males and Females.

pch, lty, lwd, col, pt.bg, ...

Additional arguments specifying symbol types (pch), line types
(lty), line widths (lwd), background color of symbol types 21

through 25 ((pt.bg)) and several other optional arguments. See
?legend for a complete list

For example, to add a legend to to bottom-right of an existing
graph where data from females are plotted in blue circles and data
from males are plotted in pink circles, you’d use the following code:

legend("bottomright", # Put legend in bottom right of graph

legend = c("Females", "Males"), # Names of groups

col = c("blue", "orange"), # Colors of symbols

pch = c(16, 16) # Point types

)

In margin Figure I use this code to add a legend to plot contain-
ing data from males and females.

9: plotting: part 1 151

Additional low-level plotting functions

There are many more low-level plotting functions that can add addi-
tional elements to your plots. Here are some I use. To see examples
of how to use each one, check out their associated help menus.

par(mar = c(0, 0, 3, 0))

plot(1, xlim = c(1, 100), ylim = c(1, 100),
type = "n", xaxt = "n", yaxt = "n",
ylab = "", xlab = "", main = "Adding simple figures to a plot")

text(25, 95, labels = "rect()")

rect(xleft = 10, ybottom = 70,
xright = 40, ytop = 90, lwd = 2, col = "coral")

text(25, 60, labels = "polygon()")

polygon(x = runif(6, 15, 35),
y = runif(6, 40, 55),
col = "skyblue"
)

polygon(x = c(15, 35, 25, 15),
y = c(40, 40, 55, 40),
col = "skyblue"
)

text(25, 30, labels = "segments()")

segments(x0 = runif(5, 10, 40),
y0 = runif(5, 5, 25),
x1 = runif(5, 10, 40),
y1 = runif(5, 5, 25), lwd = 2
)

text(75, 95, labels = "symbols(circles)")

symbols(x = runif(3, 60, 90),
y = runif(3, 60, 70),
circles = c(1, .1, .3),
add = T, bg = gray(.5, .1))

text(75, 30, labels = "arrows()")

arrows(x0 = runif(3, 60, 90),
y0 = runif(3, 10, 25),
x1 = runif(3, 60, 90),
y1 = runif(3, 10, 25),
length = .1, lwd = 2
)

Adding simple figures to a plot

rect()

polygon()

segments()

symbols(circles)

arrows()

Additional low-level plotting functions

rect()

Add rectangles to a plot at coordinates specified by xleft,

ybottom, xright, ybottom. For example, to add a rectangle with
corners at (0, 0) and c(10, 10), specify xleft = 0, ybottom = 0,

xright = 10, ytop = 10. Additional arguments like col, border

change the color of the rectangle.

polygon()

Add a polygon to a plot at coordinates specified by vectors x and y.
Additional arguments such as col, border change the color of the
inside and border of the polygon

segments(), arrows()

Add segments (lines with fixed endings), or arrows to a plot.

symbols(add = T)

Add symbols (circles, squares, rectangles, stars, thermometers) to
a plot. The dimensions of each symbol are specified with specific
input types. See ?symbols for details. Specify add = T to add to an
existing plot or add = F to create a new plot.

axis()

Add an additional axis to a plot (or add fully customizable x and y
axes). Usually you only use this if you set xaxt = "n", yaxt = "n"

in the original high-level plotting function.

mtext()

Add text to the margins of a plot. Look at the help menu for
mtext() to see parameters for this function.

152 yarrr! the pirate’s guide to r

Saving plots to a file

Once you’ve created a plot in R, you may wish to save it to a file so
you can use it in another document. To do this, you’ll use either the
pdf() or jpeg() functions. These functions will save your plot to
either a .pdf of jpeg file.

pdf() and jpeg()

file

The name and file destination of the final plot entered as a string.
For example, to put a plot on my desktop, I’d write file =

"/Users/nphillips/Desktop/plot.pdf" when creating a pdf, and
file = "/Users/nphillips/Desktop/plot.jpg" when creating a
jpeg.

width, height

The width and height of the final plot in inches.

family()

An optional name of the font family to use for the plot. For exam-
ple, family = "Helvetica" will use the Helvetica font for all text
(assuming you have Helvetica on your system). For more help on
using different fonts, look at section "Using extra fonts in R" in
Chapter XX

dev.off()

This is not an argument to pdf() and jpeg(). You just need to ex-
ecute this code after creating the plot to finish creating the image
file (see examples below).

To use these functions to save files, you need to follow 3 steps

1. Execute the pdf() or jpeg() functions with file, width and
height arguments.

2. Execute all your plotting code.

3. Complete the file by executing the command dev.off(). This tells
R that you’re done creating the file.

Here’s an example of the three steps.

9: plotting: part 1 153

Step 1: Call the pdf command

pdf(file = "/figures/My Plot.pdf", # The directory you want to save the file in

width = 4, # The width of the plot in inches

height = 4 # The height of the plot in inches

)

Step 2: Create the plot

plot(1:10, 1:10)

abline(v = 0) # Additional low-level plotting commands

text(x = 0, y = 1, labels = "Random text")

Step 3: Run dev.off() to create the file!

dev.off()

You’ll notice that after you close the plot with dev.off(), you’ll see
a message in the prompt like "null device".

Using the command pdf() will save the file as a pdf. If you use
jpeg(), it will be saved as a jpeg.

154 yarrr! the pirate’s guide to r

Test your R Might! Purdy pictures

For the following exercises, you’ll use datasets from the yarrr pack-
age. Make sure to install and load the package

1. The BeardLengths dataframe contains data on the lengths of
beards from 3 different pirate ships. Calculate the average beard
length for each ship using aggregate(), then create the following
barplot:

Angry Badger Fearless Snake Nervous Goat

Barplot of mean beard length by ship

Ship

B
ea

rd
 L

en
gt

h

0
5

10
15

20
25

2. Now using the entire BeardLengths dataframe, create the following
pirateplot:

9: plotting: part 1 155

Pirateplot of beard lengths by ship

Ship

B
ea

rd

0

5

10

15

20

25

30

35

40

45

50

Angry Badger Fearless Snake Nervous Goat

3.

4. Using the pirates dataset, create the following scatterplot showing
the relationship between a pirate’s age and how many parrot’s
(s)he has owned (hint: to make the points solid and transparent,
use pch = 16, and col = gray(level = .5, alpha = .1)).

156 yarrr! the pirate’s guide to r

10 15 20 25 30 35 40 45

0
5

10
15

20
25

Pirate age and number of parrots owned

Age

P
ar

ro
ts

10: Plotting: Part Deux

Advanced colors

Shades of gray with gray()

If you’re a lonely, sexually repressed, 50+ year old housewife, then
you might want to stick with shades of gray. If so, the function
gray(x) is your answer. gray() is a function that takes a number (or
vector of numbers) between 0 and 1 as an argument, and returns
a shade of gray (or many shades of gray with a vector input). A
value of 1 is equivalent to "white" while 0 is equivalent to "black".
This function is very helpful if you want to create shades of gray
depending on the value of a numeric vector. For example, if you had
survey data and plotted income on the x-axis and happiness on the
y-axis of a scatterplot, you could determine the darkness of each
point as a function of a third quantitative variable (such as number of
children or amount of travel time to work). I plotted an example of
this in Figure 59.

inc <- rnorm(n = 200, mean = 50, sd = 10)
hap <- inc + rnorm(n = 200, mean = 0, sd = 15)
drive <- inc + rnorm(n = 200, mean = 0, sd = 5)

plot(x = inc, y = hap, pch = 16,
col = gray((drive - min(drive)) / max(drive - min(drive)), alpha = .4),
cex = 1.5,
xlab = "income", ylab = "happiness"
)

30 40 50 60 70 80

0
20

40
60

80
10

0

income

ha
pp

in
es

s

Figure 59: Using the gray() function to
easily create shades of gray in plotting
symbols based on numerical data.

158 yarrr! the pirate’s guide to r

Pirate Palettes

The yarrr package comes with several color palettes ready for you to
use. The palettes are contained in the piratepal() function. To see all
the palettes, run the following code:

If you see a palette you like, you can
see the colors (and their inspiration), in
more detail as follows:

library("yarrr")
piratepal(palette = "basel",

plot.result = TRUE
)

blu
e1

re
d

gr
ee

n
pin

k
or

an
ge

blu
e2

gr
ee

n2

ye
llo

w

tu
rq

uo
ise

po
op

basel
trans = 0

library("yarrr")

piratepal(palette = "all",

plot.result = TRUE)

Here are all of the pirate palettes

Transparency is set to 0

basel

pony

xmen

southpark

google

eternal

evildead

usualsuspects

ohbrother

appletv

brave

bugs

cars

nemo

rat

up

espresso

ipod

info

info2

Save the South Park palette
sp.cols <- piratepal(palette = "southpark")

Create a blank plot
plot(1, xlim = c(0, 6), ylim = c(0, 2),

bty = "n", type = "n")

Add points
points(x = 1:5, y = rep(1, 5),

pch = c(21, 22, 23, 24, 25),
bg = sp.cols, # Use the South Park Colors
col = "white",
cex = 5)

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

Index

1

Once you find a color palette you like, you can save the colors as a
vector by setting the action argument to "return", and assigning the
result to an object. For example, if I want to use the southpark palette
and use them in a plot, I would do the following:

Save the South Park palette

sp.cols <- piratepal(palette = "southpark")

plot(x = 1:5, y = rep(1, 5),

pch = c(21, 22, 23, 24, 25),

main = "South Park Colors",

bg = sp.cols, # Use the South Park Colors

col = "white", cex = 3)

10: plotting: part deux 159

Color Palettes with the RColorBrewer package

If you use many colors in the same plot, it’s probably a good idea
to choose colors that compliment each other. An easy way to select
colors that go well together is to use a color palette - a collection of
colors known to go well together.

One package that is great for getting (and even creating) palettes
is RColorBrewer. Here are some of the palettes in the package. The
name of each palette is in the first column, and the colors in each
palette are in each row:

require("RColorBrewer")

display.brewer.all()

BrBG
PiYG

PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired

Pastel1
Pastel2

Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

To use one of the palettes, execute the function brewer.pal(n,

name), where n is the number of colors you want, and name is the
name of the palette. For example, to get 4 colors from the color set
“Set1", you’d use the code

my.colors <- brewer.pal(4, "Set1") # 4 colors from Set1
my.colors

[1] "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3"

I know the results look like gibberish, but trust me, R will inter-
pret them as the colors in the palette. Once you store the output of
the brewer.pal() function as a vector (something like my.colors),

160 yarrr! the pirate’s guide to r

you can then use this vector as an argument for the colors in your
plot.

Numerically defined color gradients with colorRamp2

My favorite way to generate colors that represent numerical data
is with the function colorRamp2 in the circlize package (the same
package that creates that really cool chordDiagram from Chapter 1).
The colorRamp2 function allows you to easily generate shades of
colors based on numerical data.

library("RColorBrewer")
library("circlize")

Create Data
drinks <- sample(1:30, size = 100, replace = T)
smokes <- sample(1:30, size = 100, replace = T)
risk <- 1 / (1 + exp(-drinks / 20 + rnorm(100, mean = 0, sd = 1)))

Create color function from colorRamp2
smoking.colors <- colorRamp2(breaks = c(0, 15, 30),

colors = c("blue", "orange", "red"),
transparency = .3
)

Set up plot layout
layout(mat = matrix(c(1, 2), nrow = 2, ncol = 1),

heights = c(2.5, 5), widths = 4)

Top Plot
par(mar = c(4, 4, 2, 1))
plot(1, xlim = c(-.5, 31.5), ylim = c(0, .3),

type = "n", xlab = "Cigarette Packs",
yaxt = "n", ylab = "", bty = "n",
main = "colorRamp2 Example")

segments(x0 = c(0, 15, 30),
y0 = rep(0, 3),
x1 = c(0, 15, 30),
y1 = rep(.1, 3),
lty = 2)

points(x = 0:30,
y = rep(.1, 31), pch = 16,
col = smoking.colors(0:30))

text(x = c(0, 15, 30), y = rep(.2, 3),
labels = c("Blue", "Orange", "Red"))

Bottom Plot
par(mar = c(4, 4, 5, 1))
plot(x = drinks, y = risk, col = smoking.colors(smokes),

pch = 16, cex = 1.2, main = "Plot of (Made-up) Data",
xlab = "Drinks", ylab = "Risk")

mtext(text = "Point color indicates smoking rate", line = .5, side = 3)

0 5 10 15 20 25 30

colorRamp2 Example

Cigarette Packs

Blue Orange Red

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

Plot of (Made−up) Data

Drinks

R
is

k

Point color indicates smoking rate

The best way to explain how colorRamp2 works is by giving you
an example. Let’s say that you want to want to plot data showing the
relationship between the number of drinks someone has on average
per week and the resulting risk of some adverse health effect. Further,
let’s say you want to color the points as a function of the number
of packs of cigarettes per week that person smokes, where a value
of 0 packs is colored Blue, 10 packs is Orange, and 30 packs is Red.
Moreover, you want the values in between these break points of 0, 10

and 30 to be a mix of the colors. For example, the value of 5 (half way
between 0 and 10) should be an equal mix of Blue and Orange.

colorRamp2 allows you to do exactly this. The function has three
arguments:

• breaks: A vector indicating the break points

• colors: A vector of colors corresponding to each value in breaks

• transparency: A value between 0 and 1 indicating the trans-
parency (1 means fully transparent)

When you run the function, the function will actually return
another function that you can then use to generate colors. Once you
store the resulting function as an object (something like my.color.fun

You can then apply this new function on numerical data (in our
example, the number of cigarettes someone smokes) to obtain the
correct color for each data point.

For example, let’s create the color ramp function for our smoking
data points. I’ll use colorRamp2 to create a function that I’ll call
smoking.colors which takes a number as an argument, and returns
the corresponding color:

smoking.colors <- colorRamp2(breaks = c(0, 15, 30),

colors = c("blue", "orange", "red"),

transparency = .3

)

10: plotting: part deux 161

smoking.colors(0) # Equivalent to blue

[1] "#0000FFB2"

smoking.colors(20) # Mix of orange and red

[1] "#FF8200B2"

To see this function in action, check out the the margin Figure for
an example, and check out the help menu ?colorRamp2 for more
information and examples.

Stealing any color from your screen with a kuler

One of my favorite tricks for getting great colors in R is to use a
color kuler. A color kuler is a tool that allows you to determine the
exact RGB values for a color on a screen. For example, let’s say that
you wanted to use the exact colors used in the Google logo. To do
this, you need to use an app that allows you to pick colors off your
computer screen. On a Mac, you can use the program called "Digital
Color Meter." If you then move your mouse over the color you want,
the software will tell you the exact RGB values of that color. In the
image below, you can see me figuring out that the RGB value of the
G in Google is R: 19, G: 72, B: 206. Using this method, I figured out
the four colors of Google! Check out the margin Figure for the grand
result.

google.colors <- c(
rgb(19, 72, 206, maxColorValue = 255),
rgb(206, 45, 35, maxColorValue = 255),
rgb(253, 172, 10, maxColorValue = 255),
rgb(18, 140, 70, maxColorValue = 255))

par(mar = rep(0, 4))

plot(1, xlim = c(0, 7), ylim = c(0, 1),
xlab = "", ylab = "", xaxt = "n", yaxt = "n",
type = "n", bty = "n"
)

points(1:6, rep(.5, 6),
pch = c(15, 16, 16, 17, 18, 15),
col = google.colors[c(1, 2, 3, 1, 4, 2)],
cex = 2.5)

text(3.5, .7, "Look familiar?", cex = 1.5)

Look familiar?

Figure 60: Stealing colors from the
internet. Not illegal (yet).

162 yarrr! the pirate’s guide to r

Plot margins
par(mar = rep(8, 4))

x.vals <- rnorm(500)
y.vals <- x.vals + rnorm(500, sd = .5)

plot(x.vals, y.vals, xlim = c(-2, 2), ylim = c(-2, 2),
main = "", xlab = "", ylab = "", xaxt = "n",
yaxt = "n", bty = "n", pch = 16, col = gray(.5, alpha = .2))

axis(1, at = seq(-2, 2, .5), col.axis = gray(.8), col = gray(.8))
axis(2, at = seq(-2, 2, .5), col.axis = gray(.8), col = gray(.8))

par(new = T)
par(mar = rep(0, 4))
plot(1, xlim = c(0, 1), ylim = c(0, 1), type ="n",

main = "", bty = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n")

rect(0, 0, 1, 1)

rect(.21, .22, .85, .8, lty = 2)

arrows(c(.5, .5, 0, .85),
c(.8, .22, .5, .5),
c(.5, .5, .21, 1),
c(1, 0, .5, .5),
code = 3, length = .1
)

text(c(.5, .5, .09, .93),
c(.88, .11, .5, .5),
labels = c("mar[1]", "mar[2]", "mar[3]", "mar[4]"),
pos = c(2, 2, 1, 1)
)

text(.7, .9, "This is Margin Text\nMade with mtext()")

−2.0 −1.0 0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

2.
0

mar[1]

mar[2]

mar[3] mar[4]

This is Margin Text
Made with mtext()

All plots in R have margins surrounding them that separate the main
plotting space from the area where the axes, labels and additional
text lie.. To visualize how R creates plot margins, look at margin
Figure .

You can adjust the size of the margins by specifying a margin
parameter using the syntax par(mar = c(a, b, c, d)) before you
execute your first high-level plotting function, where a, b, c and d are
the size of the margins on the bottom, left, top, and right of the plot.
Let’s see how this works by creating two plots with different margins:

In the plot on the left, I’ll set the margins to 3 on all sides. In the
plot on the right, I’ll set the margins to 6 on all sides.

par(mfrow = c(1, 2)) # Put plots next to each other

First Plot
par(mar = rep(2, 4)) # Set the margin on all sides to 2
plot(1:10)
mtext("Small Margins", side = 3, line = 1, cex = 1.2)

Second Plot
par(mar = rep(6, 4)) # Set the margin on all sides to 6
plot(1:10)
mtext("Large Margins", side = 3, line = 1, cex = 1.2)

2 4 6 8 10

2
4

6
8

10

Small Margins

2 4 6 8 10

2
4

6
8

10

Index

1:
10

Large Margins

The default value for mar is c(5.1, 4.1,
4.1, 2.1)You’ll notice that the margins are so small in the first plot that you

can’t even see the axis labels, while in the second plot there is plenty
(probably too much) white space around the plotting region.

In addition to using the mar parameter, you can also specify mar-
gin sizes with the mai parameter. This acts just like mar except that
the values for mai set the margin size in inches.

10: plotting: part deux 163

Arranging multiple plots with par(mfrow) and layout

R makes it easy to arrange multiple plots in the same plotting space.
The most common ways to do this is with the par(mfrow) parameter,
and the layout() function. Let’s go over each in turn:

Simple plot layouts with par(mfrow) and par(mfcol)

par(mfrow = c(3, 3))
par(mar = rep(2.5, 4))

for(i in 1:9) { # Loop across plots

Generate data
x <- rnorm(100)
y <- x + rnorm(100)

Plot data
plot(x, y, xlim = c(-2, 2), ylim = c(-2, 2),

col.main = "gray",
pch = 16, col = gray(.0, alpha = .1),
xaxt = "n", yaxt = "n"
)

Add a regression line for fun
abline(lm(y ~ x), col = "gray", lty = 2)

Add gray axes
axis(1, col.axis = "gray",

col.lab = gray(.1), col = "gray")

axis(2, col.axis = "gray",
col.lab = gray(.1), col = "gray")

Add large index text
text(0, 0, i, cex = 7)

Create box around border
box(which = "figure", lty = 2)

}

x

−2 −1 0 1 2

−
2

−
1

0
1

2

1
x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

2
x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

3

x

−2 −1 0 1 2

−
2

−
1

0
1

2

4
x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

5
x

y

−2 −1 0 1 2

−
2

−
1

0
1

2

6

−2 −1 0 1 2

−
2

−
1

0
1

2

7 y

−2 −1 0 1 2

−
2

−
1

0
1

2

8 y

−2 −1 0 1 2

−
2

−
1

0
1

2

9

Figure 61: A matrix of plotting regions
created by par(mfrow = c(3, 3))

The mfrow and mfcol parameters allow you to create a matrix of plots
in one plotting space. Both parameters take a vector of length two as
an argument, corresponding to the number of rows and columns in
the resulting plotting matrix. For example, the following code sets up
a 3 x 3 plotting matrix.

par(mfrow = c(3, 3)) # Create a 3 x 3 plotting matrix

When you execute this code, you won’t see anything happen.
However, when you execute your first high-level plotting command,
you’ll see that the plot will show up in the space reserved for the first
plot (the top left). When you execute a second high-level plotting
command, R will place that plot in the second place in the plotting
matrix - either the top middle (if using par(mfrow) or the left middle
(if using par(mfcol)). As you continue to add high-level plots, R will
continue to fill the plotting matrix.

So what’s the difference between par(mfrow) and par(mfcol)? The
only difference is that while par(mfrow) puts sequential plots into the
plotting matrix by row, par(mfcol) will fill them by column.

When you are finished using a plotting matrix, be sure to reset the
plotting parameter back to its default state:

par(mfrow = c(1, 1))

If you don’t reset the mfrow parameter, R will continue creating
new plotting matrices.

Complex plot layouts with layout()

While par(mfrow) allows you to create matrices of plots, it does
not allow you to create plots of different sizes. In order to arrange
plots in different sized plotting spaces, you need to use the layout()

function. Unlike par(mfrow), layout is not a plotting parameter,
rather it is a function all on its own. Let’s go through the main
arguments of layout():

layout(mat, widths, heights)

164 yarrr! the pirate’s guide to r

• mat: A matrix indicating the location of the next N figures in
the global plotting space. Each value in the matrix must be 0 or
a positive integer. R will plot the first plot in the entries of the
matrix with 1, the second plot in the entries with 2,...

• widths: A vector of values for the widths of the columns of the
plotting space.

• heights: A vector of values for the heights of the rows of the
plotting space.

The layout() function can be a bit confusing at first, so I think it’s
best to start with an example. Let’s say you want to place histograms
next to a scatterplot: Let’s do this using layout

layout.matrix <- matrix(c(2, 1, 0, 3), nrow = 2, ncol = 2)

layout(mat = layout.matrix,
heights = c(1, 2), # Heights of the two rows
widths = c(2, 2) # Widths of the two columns
)

layout.show(3)

1

2

3

Figure 62: A plotting layout created
by setting a layout matrix and specific
heights and widths.

We’ll begin by creating the layout matrix, this matrix will tell R in
which order to create the plots:

layout.matrix <- matrix(c(0, 2, 3, 1), nrow = 2, ncol = 2)

layout.matrix

[,1] [,2]

[1,] 0 3

[2,] 2 1

Looking at the values of layout.matrix, you can see that we’ve
told R to put the first plot in the bottom right, the second plot on the
bottom left, and the third plot in the top right. Because we put a 0 in
the first element, R knows that we don’t plan to put anything in the
top left area.

Now, because our layout matrix has two rows and two columns,
we need to set the widths and heights of the two columns. We do this
using a numeric vector of length 2. I’ll set the heights of the two rows
to 1 and 2 respectively, and the widths of the columns to 1 and 2

respectively. Now, when I run the code layout.show(3), R will show
us the plotting region we set up (see margin Figure 62)

Now we’re ready to put the plots together

layout.matrix <- matrix(c(2, 1, 0, 3), nrow = 2, ncol = 2)

layout(mat = layout.matrix,
heights = c(1, 2), # Heights of the two rows
widths = c(2, 1) # Widths of the two columns
)

x.vals <- rnorm(100, mean = 100, sd = 10)
y.vals <- x.vals + rnorm(100, mean = 0, sd = 10)

Plot 1: Scatterplot
par(mar = c(5, 4, 0, 0))
plot(x.vals, y.vals)

10: plotting: part deux 165

abline(h = median(y.vals), lty = 1, col = "gray")
abline(v = median(x.vals), lty = 1, col = "gray")

Plot 2: X boxplot
par(mar = c(0, 4, 0, 0))
boxplot(x.vals, xaxt = "n",

yaxt = "n", bty = "n", yaxt = "n",
col = "white", frame = F, horizontal = T)

Plot 3: Y boxplot
par(mar = c(5, 0, 0, 0))
boxplot(y.vals, xaxt = "n",

yaxt = "n", bty = "n", yaxt = "n",
col = "white", frame = F)

80 90 100 110 120

70
80

90
10

0
11

0
12

0
13

0

x.vals

y.
va

ls

166 yarrr! the pirate’s guide to r

Additional Tips

• To change the background color of a plot, add the command
par(bg = mycolor) (where my.color is the color you want to use)
prior to creating the plot. For example, the following code will put
a light gray background behind a histogram:

par(bg = gray(.9))

hist(x = rnorm(100))

Histogram of rnorm(100)

rnorm(100)

F
re

qu
en

cy

−3 −1 0 1 2

0
5

15

See Figure 63 for a nicer example.

pdf("/Users/nphillips/Dropbox/Git/YaRrr_Book/media/parrothelvetica.pdf",
width = 8, height = 6)

parrot.data <- data.frame(
"parrots" = 0:6,
"female" = c(200, 150, 100, 175, 55, 25, 10),
"male" = c(150, 125, 180, 242, 10, 62, 5)
)

n.data <- nrow(parrot.data)

par(bg = rgb(61, 55, 72, maxColorValue = 255),
mar = c(8, 6, 6, 3)
)

plot(1, xlab = "", ylab = "", xaxt = "n",
yaxt = "n", main = "", bty = "n", type = "n",
ylim = c(0, 250), xlim = c(.5, n.data + .5)
)

abline(h = seq(0, 250, 50), lty = 3, col = gray(.95), lwd = 1)

mtext(text = seq(50, 250, 50),
side = 2, at = seq(50, 250, 50),
las = 1, line = 1, col = gray(.95))

mtext(text = paste(0:(n.data - 1), " Parrots"),
side = 1, at = 1:n.data, las = 1,
line = 1, col = gray(.95))

female.col <- gray(1, alpha = .7)
male.col <- rgb (226, 89, 92, maxColorValue = 255, alpha = 220)

rect.width <- .35
rect.space <- .04

rect(1:n.data - rect.width - rect.space / 2,
rep(0, n.data),
1:n.data - rect.space / 2,
parrot.data$female,
col = female.col, border = NA
)

rect(1:n.data + rect.space / 2,
rep(0, n.data),
1:n.data + rect.width + rect.space / 2,
parrot.data$male,
col = male.col, border = NA
)

legend(n.data - 1, 250, c("Male Pirates", "Female Pirates"),
col = c(female.col, male.col), pch = rep(15, 2),
bty = "n", pt.cex = 1.5, text.col = "white"
)

mtext("Number of parrots owned by pirates", side = 3,
at = n.data + .5, adj = 1, cex = 1.2, col = "white")

mtext("Source: Drunken survey on 22 May 2015", side = 1,
at = 0, adj = 0, line = 3, font = 3, col = "white")

dev.off()

pdf
2

#embed_fonts("/Users/nphillips/Dropbox/Git/YaRrr_Book/media/parrothelvetica.pdf") # Embed the fonts in the pdf

50

100

150

200

250

0 Parrots 1 Parrots 2 Parrots 3 Parrots 4 Parrots 5 Parrots 6 Parrots

Male Pirates
Female Pirates

Number of parrots owned by pirates

Source: Drunken survey on 22 May 2015

Figure 63: Use par(bg = my.color)
before creating a plot to add
a colored background. The
design of this plot was inspired by
http://www.vox.com/2015/5/20/8625785/expensive-wine-taste-cheap.

• Sometimes you’ll mess so much with plotting parameters that
you may want to set things back to their default value. To see
the default values for all the plotting parameters, execute the
code par() to print the default parameter values for all plotting
parameters to the console.

11: Inferential Statistics: 1 and 2-sample Null-Hypothesis
tests

Figure 64: Sadly, this still counts as just
one tattoo.

In this chapter we’ll cover 1 and 2 sample null hypothesis tests: like
the t-test, correlation test, and chi-square test:

library(yarrr) # Load yarrr to get the pirates data

1 sample t-test

Are pirate ages different than 30 on average?

t.test(x = pirates$age,

mu = 30)

2 sample t-test

Do females and males have different numbers of tattoos?

sex.ttest <- t.test(formula = tattoos ~ sex,

data = pirates,

subset = sex %in% c("male", "female"))

sex.ttest # Print result

Access specific values from test

sex.ttest$statistic

sex.ttest$p.value

sex.ttest$conf.int

Correlation test

Is there a relationship between age and height?

cor.test(formula = ~ age + height,

data = pirates)

Chi-Square test

Is there a relationship between college and favorite pirate?

chisq.test(x = pirates$college,

y = pirates$favorite.pirate)

168 yarrr! the pirate’s guide to r

Do we get more treasure from chests buried in sand or at the bot-
tom of the ocean? Is there a relationship between the number of scars
a pirate has and how much grogg he can drink? Are pirates with
body piercings more likely to wear bandannas than those without
body piercings? Glad you asked, in this chapter, we’ll answer these
questions using 1 and 2 sample frequentist hypothesis tests.

As this is a Pirate’s Guide to R, and not a Pirate’s Guide to Statis-
tics, we won’t cover all the theoretical background behind frequentist
null hypothesis tests (like t-tests) in much detail. However, it’s impor-
tant to cover three main concepts: Descriptive statistics, Test statistics,
and p-values. To do this, let’s talk about body piercings.

Null vs. Alternative Hypotheses, Descriptive Statistics, Test Statis-
tics, and p-values: A very short introduction

As you may know, pirates are quite fond of body piercings. Both
as a fashion statement, and as a handy place to hang their laundry.
Now, there is a stereotype that European pirates have more body
piercings than American pirates. But is this true? To answer this, I
conducted a survey where I asked 10 American and 10 European
pirates how many body piercings they had. The results are below,
and a Pirateplot of the data is in Figure 65:

Body Piercing Survey

Group
N

um
be

r
of

 B
od

y
P

ie
rc

in
gs

1

2

3

4

5

6

7

8

9

American European

Figure 65: A Pirateplot (using the
pirateplot() function in the yarrr
package) of the body piercing data

.

american.bp <- c(3, 5, 2, 1, 4, 4, 6, 3, 5, 4)

european.bp <- c(8, 5, 9, 7, 6, 8, 8, 6, 9, 7)

Null v Alternative Hypothesis

In null hypothesis tests, you always start with a null hypothesis. The
specific null hypothesis you choose will depend on the type of ques-
tion you are asking, but in general, the null hypothesis states that
nothing is going on and everything is the same. For example, in our body
piercing study, our null hypothesis is that American and European
pirates have the same number of body piercings on average.

Null Hypothesis: Everything is the
same

Alternative Hypothesis: Everything is
not the sameThe alternative hypothesis is the opposite of the null hypothesis. In

this case, our alternative hypothesis is that American and European
pirates do not have the same number of piercings on average. We
can have different types of alternative hypotheses depending on how
specific we want to be about our prediction. We can make a 1-sided
(also called 1-tailed) hypothesis, by predicting the direction of the
difference between American and European pirates. For example,
our alternative hypothesis could be that European pirates have more
piercings on average than American pirates.

11: inferential statistics: 1 and 2-sample null-hypothesis tests 169

Alternatively, we could make a 2-sided (also called 2-tailed) alterna-
tive hypothesis that American and European pirates simply differ in
their average number of piercings, without stating which group has
more piercings than the other.

Once we’ve stated our null and alternative hypotheses, we collect
data and then calculate descriptive statistics.

Descriptive Statistics

Descriptive statistics (also called sample statistics) describe samples
of data. For example, a mean, median, or standard deviation of a
dataset is a descriptive statistic of that dataset. Let’s calculate some
descriptive statistics on our body piercing survey American and
European pirates using the summary() function:

summary(american.bp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.00 4.00 3.70 4.75 6.00

summary(european.bp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.00 6.25 7.50 7.30 8.00 9.00

Well, it looks like our sample of 10 American pirates had 3.7 body
piercings on average, while our sample of 10 European pirates had
7.3 piercings on average. But is this difference large or small? Are we
justified in concluding that American and European pirates in general
differ in how many body piercings they have? To answer this, we
need to calculate a test statistic

Test Statistics

An test statistic compares descriptive statistics, and determines how
different they are. The formula you use to calculate a test statistics
depends the type of test you are conducting, which depends on
many factors, from the scale of the data (i.e.; is it nominal or inter-
val?), to how it was collected (i.e.; was the data collected from the
same person over time or were they all different people?), to how its
distributed (i.e.; is it bell-shaped or highly skewed?).

For now, I can tell you that the type of data we are analyzing calls
for a two-sample T-test. This test will take the descriptive statistics
from our study, and return a test-statistic we can then use to make a
decision about whether American and European pirates really differ.
To calculate a test statistic from a two-sample t-test, we can use the

170 yarrr! the pirate’s guide to r

t.test() function in R. Don’t worry if it’s confusing for now, we’ll go
through it in detail shortly.

bp.test <- t.test(x = american.bp,

y = european.bp,

alternative = "two.sided")

I can get the test statistic from my new bp.test object by using the
$ operator as follows:

bp.test$statistic

t

-5.68

It looks like our test-statistic is −5.68. If there was really no differ-
ence between the groups of pirates, we would expect a test statistic
close to 0. Because test-statistic is −5.68, this makes us think that
there really is a difference. However, in order to make our decision,
we need to get the p-value from the test.

p-value

The p-value is a probability that reflects how consistent the test
statistic is with the hypothesis that the groups are actually the same.

p-value
Assuming that there the null hypothesis is true (i.e.; that

there is no difference between the groups), what is the
probability that we would have gotten a test statistic as

extreme as the one we actually got?

For this problem, we can access the p-value as follows:

bp.test$p.value

[1] 2.3e-05

The p-value we got was .000022, this means that, assuming the
two populations of American and European pirates have the same
number of body piercings on average, the probability that we would
obtain a test statistic as large as −5.68 is around 0.0022%. This is very
small – in other words, it’s close to impossible. Because our p-value
is so small, we conclude that the two populations must not be the
same.

11: inferential statistics: 1 and 2-sample null-hypothesis tests 171

p-values are bullshit detectors against the null hypothesis

Figure 66: p-values are like bullshit
detectors against the null hypothesis.
The smaller the p-value, the more likely
it is that the null-hypothesis (the idea
that the groups are the same) is bullshit.

P-values sounds complicated – because they are (In fact, most psy-
chology PhDs get the definition wrong). It’s very easy to get con-
fused and not know what they are or how to use them. But let me
help by putting it another way: a p-value is like a bullshit detector
against the null hypothesis that goes off when the p-value is too small.
If a p-value is too small, the bullshit detector goes off and says "Bull-
shit! There’s no way you would get data like that if the groups were
the same!" If a p-value is not too small, the bullshit alarm stays silent,
and we conclude that we cannot reject the null hypothesis.

How small of a p-value is too small?

Traditionally a p-value of 0.05 (or sometimes 0.01) is used to deter-
mine ’statistical significance.’ In other words, if a p-value is less than
.05, most researchers then conclude that the null hypothesis is false.
However, .05 is not a magical number. Anyone who really believes
that a p-value of .06 is much less significant than a p-value of 0.04 has
been sniffing too much glue. However, in order to be consistent with
tradition, I will adopt this threshold for the remainder of this chapter.
That said, let me reiterate that a p-value threshold of 0.05 is just as
arbitrary as a p-value of 0.09, 0.06, or 0.12156325234.

Does the p-value tell us the probability that the null hypothesis is true?

No. The p-value does not tell you the probability that the null
hypothesis is true. In other words, if you calculate a p-value of .04,
this does not mean that the probability that the null hypothesis is
true is 4%. Rather, it means that if the null hypothesis was true, the
probability of obtaining the result you got is 4%. Now, this does
indeed set off our bullshit detector, but again, it does not mean that
the probability that the null hypothesis is true is 4%.

Let me convince you of this with a short example. Imagine that
you and your partner have been trying to have a baby for the past
year. One day, your partner calls you and says "Guess what! I took a
pregnancy test and it came back positive!! I’m pregnant!!" So, given
the positive pregnancy test, what is the probability that your partner
is really pregnant?

Figure 67: Despite what you may see in
movies, men cannot get pregnant. And
despite what you may want to believe,
p-values do not tell you the probability
that the null hypothesis is true!

Now, imagine that the pregnancy test your partner took gives
incorrect results in 1% of cases. In other words, if you are pregnant,
there is a 1% chance that the test will make a mistake and say that
you are not pregnant. If you really are not pregnant, there is a 1%
change that the test make a mistake and say you are pregnant.

Ok, so in this case, the null hypothesis here is that your partner is

172 yarrr! the pirate’s guide to r

not pregnant, and the alternative hypothesis is that they are pregnant.
Now, if the null hypothesis is true, then the probability that they
would have gotten an (incorrect) positive test result is just 1%. Does
this mean that the probability that your partner is not pregnant is
only 1%.

No. Your partner is a man. The probability that the null hypothe-
sis is true (i.e. that he is not pregnant), is 100%, not 1%. Your stupid
boyfriend doesn’t understand basic biology and decided to buy an
expensive pregnancy test anyway.

This is an extreme example of course – in most tests that you do,
there will be some positive probability that the null hypothesis is
false. However, in order to reasonably calculate an accurate proba-
bility that the null hypothesis is true after collecting data, you must
take into account the prior probability that the null hypothesis was
true before you collected data. The method we use to do this is with
Bayesian statistics. We’ll go over Bayesian statistics in a later chapter.

Hypothesis test objects – htest

R stores hypothesis tests in special object classes called htest. htest
objects contain all the major results from a hypothesis test, from
the test statistic (e.g.; a t-statistic for a t-test, or a correlation coef-
ficient for a correlation test), to the p-value, to a confidence inter-
val. To show you how this works, let’s create an htest object called
height.htest containing the results from a two-sample t-test compar-
ing the heights of male and female pirates:

T-test comparing male and female heights

stored in a new htest object called height.htest

height.htest <- t.test(formula = height ~ sex,

data = pirates,

subset = sex %in% c("male", "female"))

Once you’ve created an htest object, you can view a print-out of
the main results by just evaluating the object name:

11: inferential statistics: 1 and 2-sample null-hypothesis tests 173

Print main results from height.htest

height.htest

##

Welch Two Sample t-test

##

data: height by sex

t = -20, df = 1000, p-value <2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-15.3 -12.6

sample estimates:

mean in group female mean in group male

163 177

However, just like in dataframes, you can also access specific
elements of the htest object by using the $ operator. To see all the
named elements in the object, run names():

Show me all the elements in the height.htest object

names(height.htest)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

Now, if we want to access the test statistic or p-value directly, we
can just use $:

Here, I’ll create a plot, and then add
hypothesis test information to the
upper margin using a combination of
mtext(), paste() and a hypothesis test
object:

Create pirateplot
pirateplot(
formula = age ~ headband,
data = pirates,
main = "Pirate age by headband use")

Create the htest object
age.htest <- t.test(

formula = age ~ headband,
data = pirates)

Add test statistic and p-value to subtitle
mtext(

side = 3,
text = paste("t = ",

round(age.htest$statistic, 2),
", p = ",
round(age.htest$p.value, 2)),

font = 3)

Pirate age by headband use

headband

ag
e

10

15

20

25

30

35

40

45

50

no yes

t = 0.35 , p = 0.73

Figure 68: You can add test statistics to
a plot by accessing their specific values
from the htest object!

Get the test statistic

height.htest$statistic

t

-20.7

Get the p-value

height.htest$p.value

[1] 1.39e-78

Get a confidence interval for the mean

height.htest$conf.int

[1] -15.3 -12.6

attr(,"conf.level")

[1] 0.95

174 yarrr! the pirate’s guide to r

T-test with t.test()

To compare the mean of 1 group to a specific value, or to compare
the means of 2 groups, you do a t-test. The t-test function in R is
t.test(). The t.test() function can take several arguments, here I’ll
emphasize a few of them. To see them all, check the help menu for
t.test (?t.test).

1−Sample t−test

Number of Tattoos

0 5 10 15 20

Null Hypothesis
Mean = 5

2−Sample t−test

Tattoos

0 5 10 15 20

mean(EP)
= 9.34

mean(No EP)
= 9.61

One-Sample t-test

In a one-sample t-test, you compare the data from one group of
data to some hypothesized mean. For example, if someone said that
pirates on average have 5 tattoos, we could conduct a one-sample test
comparing the data from a sample of pirates to a hypothesized mean
of 5.

Here are some optional arguments to
t.test()

alternative A character string specifying the
alternative hypothesis, must be one
of "two.sided" (default), "greater" or
"less". You can specify just the initial
letter.

mu A number indicating the true value
of the mean (or difference in means
if you are performing a two sample
test). The default is 0.

paired A logical indicating whether you
want a paired t-test.

var.equal A logical variable indicating
whether to treat the two variances as
being equal.

conf.level The confidence level of the interval.

subset An optional vector specifying a
subset of observations to be used.

To conduct a one-sample t-test in R using t.test(), enter a vector
as the main argument x, and the null hypothesis as the argument mu:

Fomulation of a one-sample t-test

t.test(x = x, # A vector of data

mu = 0) # The null-hypothesis

Here, I’ll conduct a t-test to see if the average number of tattoos
owned by pirates is different from 0

11: inferential statistics: 1 and 2-sample null-hypothesis tests 175

t.test(x = pirates$tattoos, # Vector of data

mu = 0) # Null: Mean is 0

##

One Sample t-test

##

data: pirates$tattoos

t = 90, df = 1000, p-value <2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

9.22 9.64

sample estimates:

mean of x

9.43

As you can see, the function printed lots of information: the
sample mean was 9.43, the test statistic (88.54), and the p-value was
2e-16 (which is virtually 0).

Now, what happens if I change the null hypothesis to a mean of
9.4? Because the sample mean was 9.43, quite close to 9.4, the test
statistic should decrease, and the p-value should increase:

t.test(x = pirates$tattoos,

mu = 9.4) # Null: Mean is 9.4

##

One Sample t-test

##

data: pirates$tattoos

t = 0.3, df = 1000, p-value = 0.8

alternative hypothesis: true mean is not equal to 9.4

95 percent confidence interval:

9.22 9.64

sample estimates:

mean of x

9.43

Just as we predicted! The test statistic decreased to just 0.27, and
the p-value increased to 0.79. In other words, our sample mean
of 9.43 is reasonably consistent with the hypothesis that the true
population mean is 9.30.

176 yarrr! the pirate’s guide to r

Two-sample t-test

In a two-sample t-test, you compare the means of two groups of
data and test whether or not they are the same.We can specify two-
sample t-tests in one of two ways. If the dependent and independent
variables are in a dataframe, you can use the formula notation in the
form y ∼ x, and specify the dataset containing the data in data

Fomulation of a two-sample t-test

Method 1: Formula

t.test(formula = y ~ x, # Formula

data = df) # Dataframe containing the variables

Alternatively, if the data you want to compare are in individual
vectors (not together in a dataframe), you can use the vector notation:

Method 2: Vector

t.test(x = x, # First vector

y = y) # Second vector

For example, let’s test a prediction that pirates who wear eye
patches have fewer tattoos on average than those who don’t wear eye
patches. Because the data are in the pirates dataframe, we can do
this using the formula method:

2-sample t-test

IV = eyepatch (0 or 1)

DV = tattoos

tat.patch.htest <- t.test(formula = tattoos ~ eyepatch,

data = pirates)

This test gave us a test statistic of 1.22 and a p-value of 0.22.
To see all the information contained in the test object, use the

names() function

names(tat.patch.htest)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

Now, we can, for example, access the confidence interval for the
mean differences using $:

11: inferential statistics: 1 and 2-sample null-hypothesis tests 177

Confidence interval for mean differences

tat.patch.htest$conf.int

[1] -0.164 0.709

attr(,"conf.level")

[1] 0.95

Using subset to select levels of an IV

If your independent variable has more than two values, the t.test()

function will return an error because it doesn’t know which two
groups you want to compare. For example, let’s say I want to com-
pare the number of tattoos of pirates of different ages. Now, the age
column has many different values, so if I don’t tell t.test() which
two values of age I want to compare, I will get an error like this:

Will return an error because there are more than

2 levels of the age IV

t.test(formula = tattoos ~ age,

data = pirates)

Error in t.test.formula(formula = tattoos ~ age, data =

pirates): grouping factor must have exactly 2 levels

To fix this, I need to tell the t.test() function which two values of
age I want to test. To do this, use the subset argument and indicate
which values of the IV you want to test using the %in% operator. For
example, to compare the number of tattoos between pirates of age 29

and 30, I would add the subset = age %in% c(29, 30) argument like
this:

You can select any subset of data in
the subset argument to the t.test()
function – not just the primary indepen-
dent variable. For example, if I wanted
to compare the number of tattoos be-
tween pirates who wear handbands or
not, but only for female pirates, I would
do the following

Is there an effect of college on # of tattoos
only for female pirates?

t.test(formula = tattoos ~ college,
data = pirates,
subset = sex == "female")

##
Welch Two Sample t-test
##
data: tattoos by college
t = 1, df = 500, p-value = 0.3
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.271 0.922
sample estimates:
mean in group CCCC mean in group JSSFP
9.60 9.27

Compare the tattoos of pirates aged 29 and 30:

t.test(formula = tattoos ~ age,

data = pirates,

subset = age %in% c(29, 30)) # Compare age of 29 to 30

If you run this, you’ll get a p-value of 0.79 which is pretty high
and suggests that we should fail to reject the null hypothesis.

178 yarrr! the pirate’s guide to r

Correlation test with cor.test()

Next we’ll cover two-sample correlation tests. In a correlation test,
you are accessing the relationship between two variables on a ratio
or interval scale: like height and weight, or income and beard length.
The test statistic in a correlation test is called a correlation coefficient
and is represented by the letter r. The coefficient can range from -1 to
+1, with -1 meaning a strong negative relationship, and +1 meaning a
strong positive relationship. The null hypothesis in a correlation test
is a correlation of 0, which means no relationship at all:

r = −0.82 r = 0.11

y

r = 0.85

y

Here are some optional arguments to
cor.test(). As always, check the help
menu with ?cor.test for additional
information and examples:

formula A formula in the form ∼ x + y,
where x and y are the names of the
two variables you are testing. These
variables should be two separate
columns in a dataframe.

data The dataframe containing the
variables x and y

alternative A string indicating the direction of
the test. ’t’ stands for two-sided, ’l’
stands for less than, and ’g’ stands
for greater than.

method A string indicating which corre-
lation coefficient to calculate and
test. ’pearson’ (the default) stands
for Pearson, while ’kendall’ and
’spearman’ stand for Kendall and
Spearman correlations respectively.

conf.level The confidence level of the interval.

subset A vector specifying a subset of
observations to use.

To run a correlation test between two variables x and y, use the
cor.test() function. You can do this in one of two ways, if x and y
are columns in a dataframe, use the formula notation. If x and y are
separate vectors (not in a dataframe), use the vector notation

Correlation Test

Correlating two variables x and y

Method 1: Formula notation

Use if x and y are in a dataframe

cor.test(formula = ~ x + y,

data = df)

Method 2: Vector notation

Use if x and y are separate vectors

cor.test(x = x,

y = y)

Let’s conduct a correlation test on the pirates dataset to see if
there is a relationship between a pirate’s age and number of parrots
they’ve had in their lifetime. Because the variables (age and parrots)
are in a dataframe, we can do this in formula notation:

11: inferential statistics: 1 and 2-sample null-hypothesis tests 179

Is there a correlation between a pirate's age and

the number of parrots (s)he's owned?

Method 1: Formula notation

age.parrots.test <- cor.test(formula = ~ age + parrots,

data = pirates)

We can also do the same thing using vector notation – the results
will be exactly the same:

Method 2: Vector notation

age.parrots.test <- cor.test(x = pirates$age,

y = pirates$parrots)

Now let’s print the result:

age.parrots.test

##

Pearson's product-moment correlation

##

data: pirates$age and pirates$parrots

t = 6, df = 1000, p-value = 1e-09

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.13 0.25

sample estimates:

cor

0.191

Looks like we have a positive correlation of 0.19 and a very small
p-value of 1.255 × 10−9. To see what information we can extract for
this test, let’s run the command names() on the test object:

names(age.parrots.test)

[1] "statistic" "parameter" "p.value" "estimate" "null.value"

[6] "alternative" "method" "data.name" "conf.int"

Looks like we’ve got a lot of information in this test object. As
an example, let’s look at the confidence interval for the population
correlation coefficient:

180 yarrr! the pirate’s guide to r

95% confidence interval of the correlation

coefficient

age.parrots.test$conf.int

[1] 0.13 0.25

attr(,"conf.level")

[1] 0.95

Just like the t.test() function, we can use the subset argument
in the cor.test() function to conduct a test on a subset of the entire
dataframe. For example, to run the same correlation test between
a pirate’s age and the number of parrot’s she’s owned, but only for
female pirates, I can add the subset = sex == "female" argument:

Is there a correlation between age and

number parrots ONLY for female pirates?

cor.test(formula = ~ age + parrots,

data = pirates,

subset = sex == "female")

The results look pretty much identical. In other words, the
strength of the relationship between a pirate’s age and the num-
ber of parrot’s they’ve owned is pretty much the same for female
pirates and pirates in general.

11: inferential statistics: 1 and 2-sample null-hypothesis tests 181

Chi-square test

Next, we’ll cover chi-square tests. In a chi-square test test, we test
whether or not there is a difference in the rates of outcomes on a
nominal scale (like sex, eye color, first name etc.). The test statis-
tic of a chi-square text is χ2 and can range from 0 to Infinity. The
null-hypothesis of a chi-square test is that χ2 = 0 which means no
relationship.

A key difference between the chisq.test() and the other hypoth-
esis tests we’ve covered is that chisq.test() requires a table created
using the table() function as its main argument. You’ll see how this
works when we get to the examples.

1-sample Chi-square test

If you conduct a 1-sample chi-square test, you are testing if there is a
difference in the number of members of each category in the vector.
Or in other words, are all category memberships equally prevalent?
Here’s the general form of a one-sample chi-square test:

General form of a one-sample chi-square test

chisq.test(x = table(x))

As you can see, the main argument to chisq.test() should be
a table of values created using the table() function. For example,
let’s conduct a chi-square test to see if all pirate colleges are equally
prevalent in the pirates data. We’ll start by creating a table of the
college data:

Frequency table of pirate colleges

table(pirates$college)

##

CCCC JSSFP

658 342

Just by looking at the table, it looks like pirates are much more
likely to come from Captain Chunk’s Cannon Crew (CCCC) than Jack
Sparrow’s School of Fashion and Piratery (JSSFP). For this reason,
we should expect a very large test statistic and a very small p-value.
Let’s test it using the chisq.test() function.

Are all colleges equally prevelant?

chisq.test(x = table(pirates$college))

##

182 yarrr! the pirate’s guide to r

Chi-squared test for given probabilities

##

data: table(pirates$college)

X-squared = 100, df = 1, p-value <2e-16

Indeed, with a test statistic of 99.86 and a p-value of 1.639 × 10−23,
we can safely reject the null hypothesis and conclude that certain
college are more popular than others.

2-sample chi-square test

If you want to see if the frequency of one nominal variable depends
on a second nominal variable, you’d conduct a 2-sample chi-square
test. For example, we might want to know if there is a relationship
between the college a pirate went to, and whether or not he/she
wears an eyepatch. We can get a contingency table of the data from
the pirates dataframe as follows:

table(pirates$eyepatch,

pirates$favorite.pirate)

##

Anicetus Blackbeard Edward Low Hook Jack Sparrow Lewis Scot

0 34 42 32 35 159 40

1 55 77 70 82 296 78

To conduct a chi-square test on these data, we will enter table of
the two data vectors:

Is there a relationship between a pirate's

college and whether or not they wear an eyepatch?

chisq.test(x = table(pirates$college,

pirates$eyepatch))

##

Pearson's Chi-squared test with Yates' continuity correction

##

data: table(pirates$college, pirates$eyepatch)

X-squared = 0, df = 1, p-value = 1

It looks like we got a test statistic of χ2 = 0 and a p-value of 1. At
the traditional p = .05 threshold for significance, we would conclude
that we fail to reject the null hypothesis and state that we do not have
enough information to determine if pirates from different colleges
differ in how likely they are to wear eye patches.

11: inferential statistics: 1 and 2-sample null-hypothesis tests 183

Getting APA-style conclusions with the apa function

Most people think that R pirates are a completely unhinged, drunken
bunch of pillaging buffoons. But nothing could be further from the
truth! R pirates are a very organized and formal people who like
their statistical output to follow strict rules. The most famous rules
are those written by the American Pirate Association (APA). These
rules specify exactly how an R pirate should report the results of the
most common hypothesis tests to her fellow pirates.

For example, in reporting a t-test, APA style dictates that the result
should be in the form t(df) = X, p = Y (Z-tailed), where df is the
degrees of freedom of the text, X is the test statistic, Y is the p-value,
and Z is the number of tails in the test. Now you can of course read
these values directly from the test result, but if you want to save
some time and get the APA style conclusion quickly, just use the apa
function. Here’s how it works:

Consider the following two-sample t-test on the pirates dataset
that compares whether or not there is a significant age difference
between pirates who wear headbands and those who do not:

test.result <- t.test(age ~ headband,

data = pirates)

test.result

##

Welch Two Sample t-test

##

data: age by headband

t = 0.4, df = 100, p-value = 0.7

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.03 1.48

sample estimates:

mean in group no mean in group yes

27.6 27.3

It looks like the test statistic is 1.35, degrees of freedom is 116.92,
and the p-value is 0.178. Let’s see how the apa function gets these
values directly from the test object:

library(yarrr) # Load the yarrr library

apa(test.result)

[1] "mean difference = -0.22, t(135.47) = 0.35, p = 0.73 (2-tailed)"

184 yarrr! the pirate’s guide to r

As you can see, the apa function got the values we wanted and
reported them in proper APA style. The apa function will even
automatically adapt the output for Chi-Square and correlation tests
if you enter such a test object. Let’s see how it works on a correlation
test where we correlate a pirate’s age with the number of parrots she
has owned:

Print an APA style conclusion of the correlation

between a pirate's age and # of parrots

apa(cor.test(formula = ~ age + parrots,

data = pirates))

[1] "r = 0.19, t(998) = 6.13, p < 0.01 (2-tailed)"

The apa function has a few optional arguments that control things
like the number of significant digits in the output, and the number of
tails in the test. Run ?apa to see all the options.

11: inferential statistics: 1 and 2-sample null-hypothesis tests 185

Test your R might!

The following questions are based on data from either the movies

or the pirates dataset in the yarrr package. Make sure to load the
package first to get access to the data!

1. Do male pirates have significantly longer beards than female
pirates? Test this by conducting a t-test on the relevant data in
the pirates dataset. (Hint: You’ll have to select just the female and
male pirates and remove the ’other’ ones using subset())

2. Are pirates whose favorite pixar movie is Up more or less likely to
wear an eye patch than those whose favorite pixar movie is Inside
Out? Test this by conducting a chi-square test on the relevant
data in the pirates dataset. (Hint: Create a new dataframe that
only contains data from pirates whose favorite move is either
Up or Inside Out using subset(). Then do the test on this new
dataframe.)

3. Do longer movies have significantly higher budgets than shorter
movies? Answer this question by conducting a correlation test on
the appropriate data in the movies dataset.

4. Do R rated movies earn significantly more money than PG-13

movies? Test this by conducting a t-test on the relevant data in the
movies dataset.

5. Are certain movie genres significantly more common than others
in the movies dataset? Test this by conducting a 1-sample chi-
square test on the relevant data in the movies dataset.

6. Do sequels and non-sequels differ in their ratings? Test this by
conducting a 2-sample chi-square test on the relevant data in the
movies dataset.

12: ANOVA and Factorial Designs

In the last chapter we covered 1 and two sample hypothesis tests.
In these tests, you are either comparing 1 group to a hypothesized
value, or comparing the relationship between two groups (either
their means or their correlation). In this chapter, we’ll cover how to
analyse more complex experimental designs with ANOVAs.

Figure 69: Mènage á trois wine – the
perfect pairing for a 3-way ANOVA

When do you conduct an ANOVA? You conduct an ANOVA when
you are testing the effect of one or more nominal (aka factor) inde-
pendent variable(s) on a numerical dependent variable. A nominal
(factor) variable is one that contains a finite number of categories
with no inherent order. Gender, profession, experimental conditions,
and Justin Bieber albums are good examples of factors (not neces-
sarily of good music). If you only include one independent variable,
this is called a One-way ANOVA. If you include two independent
variables, this is called a Two-way ANOVA. If you include three inde-
pendent variables it is called a Mènage á trois ‘NOVA.26 26 Ok maybe it’s not yet, but we repeat

it enough it will be and we can change
the world.

For example, let’s say you want to test how well each of three
different cleaning fluids are at getting poop off of your poop deck.To
test this, you could do the following: over the course of 300 cleaning
days, you clean different areas of the deck with the three different
cleaners. You then record how long it takes for each cleaner to clean
its portion of the deck. At the same time, you could also measure
how well the cleaner is cleaning two different types of poop that
typically show up on your deck: shark and parrot. Here, your inde-
pendent variables cleaner and type are factors, and your dependent
variable time is numeric.

Thankfully, this experiment has already been conducted. The data
are recorded in a dataframe called poopdeck in the yarrr package.
Here’s how the first few rows of the data look:

188 yarrr! the pirate’s guide to r

head(poopdeck)

day cleaner type time

1 1 a parrot 47

2 1 b parrot 55

3 1 c parrot 64

4 1 a shark 101

5 1 b shark 76

6 1 c shark 63

We can visualize the poopdeck data
using (of course) a pirate plot:

pirateplot(time ~ cleaner + type,
data = poopdeck,
ylim = c(0, 150),
xlab = "Cleaner",
ylab = "Cleaning Time (minutes)",
main = "poopdeck data",
back.col = gray(.98))

poopdeck data

C
le

an
in

g
T

im
e

(m
in

ut
es

)

0

25

50

75

100

125

150

a b c a b c

type

cleaner

parrot shark

Given this data, we can use ANOVAs to answer three separate
questions:

1. Is there a difference between the different cleaners on cleaning
time (ignoring poop type)? (One-way ANOVA)

2. Is there a difference between the different poop types on cleaning
time (ignoring which cleaner is used)? (One-way ANOVA)

3. Is there a unique effect of the cleaner or poop types on cleaning
time? (Two-way ANOVA)

4. Does the effect of cleaner depend on the poop type? (Interaction
between cleaner and type)

Between-Subjects ANOVA

There are many types of ANOVAs that depend on the type of data
you are analyzing. In fact, there are so many types of ANOVAs that
there are entire books explaining differences between one type and
another. For this book, we’ll cover just one type of ANOVAs called
full-factorial, between-subjects ANOVAs. These are the simplest types of
ANOVAs which are used to analyze a standard experimental design.
In a full-factorial, between-subjects ANOVA, participants (aka, source
of data) are randomly assigned to a unique combination of factors
– where a combination of factors means a specific experimental
condition.27 27 For example, consider a psychology

study comparing the effects of caffeine
on cognitive performance. The study
could have two independent variables:
drink type (soda vs. coffee vs. energy
drink), and drink dose (.25l, .5l, 1l). In a
full-factorial design, each participant in
the study would be randomly assigned
to one drink type and one drink dose
condition. In this design, there would
be 3 x 3 = 9 conditions.

For the rest of this chapter, I will refer to full-factorial between-
subjects ANOVAs as ‘standard’ ANOVAs

What does ANOVA stand for?

ANOVA stands for "Analysis of variance." At first glance, this sounds
like a strange name to give to a test that you use to find differences

12: anova and factorial designs 189

in means, not differences in variances. However, ANOVA actually uses
variances to determine whether or not there are ’real’ differences in
the means of groups. Specifically, it looks at how variable data are
within groups and compares that to the variability of data between
groups. If the between-group variance is large compared to the
within group variance, the ANOVA will conclude that the groups
do differ in their means. If the between-group variance is small
compared to the within group variance, the ANOVA will conclude
that the groups are all the same. See Figure 70 for a visual depiction
of an ANOVA.

da
ta

0

10

20

30

40

50

60

70

80

90

100

Non−Significant ANOVA
Between var SMALL compared to Within var

Between

Between
Variability

Within

Within
Variability

da
ta

0

10

20

30

40

50

60

70

80

90

100

Significant ANOVA
Between var LARGE compared to Within var

Between

Between
Variability

Within

Within
Variability

Figure 70: How ANOVAs work.
ANOVA compares the variability
between groups (i.e.; the differences
in the means) to the variability within
groups (i.e.; the differences between
members within groups). If the variabil-
ity between groups is small compared to
the variability between groups, ANOVA
will return a non-significant result –
suggesting that the groups are not really
different. If the variability between
groups is large compared to the variabil-
ity within groups, ANOVA will return
a significant result – indicating that the
groups are really different.

190 yarrr! the pirate’s guide to r

4 Steps to conduct a standard ANOVA in R

Here are the 4 steps you should follow to conduct a standard
ANOVA in R:

Step 1 Create an ANOVA object using the aov() function. In the
aov() function, specify the independent and dependent variable(s)
with a formula with the format y ∼ x1 + x2 + ... where y is
the dependent variable, and x1, x2 ... are one (more more) factor
independent variables.

Step 1: Create an aov object

mod.aov <- aov(formula = y ~ x1 + x2 + ...,

data = data)

Step 2 Create a summary ANOVA table by applying the summary()

function to the ANOVA object you created in Step 1.

Step 2: Look at a summary of the aov object

summary(mod.aov)

Step 3 If necessary, calculate post-hoc tests by applying a post-hoc
testing function like TukeyHSD() to the ANOVA object you created
in Step 1.

Step 3: Calculate post-hoc tests

TukeyHSD(mod.aov)

Step 4 If necessary, interpret the nature of the group differences
by creating a linear regression object using lm() using the same
arguments you used in the aov() function in Step 1.

Step 4: Look at coefficients

mod.lm <- lm(formula = y ~ x1 + x2 + ...,

data = data)

summary(mod.lm)

Let’s do an example by running both a one-way and two-way
ANOVA on the poopdeck data:

12: anova and factorial designs 191

Standard one-way ANOVA

You conduct a one-way ANOVA when you testing one factor inde-
pendent variable and are ignoring all other possible variables. Let’s
use the poopdeck data and do a one-way ANOVA with cleaning time
time as the dependent variable and the cleaner type cleaner as the
independent variable.

Step 1: Create an ANOVA object from the regression object with aov()

First, we’ll create an ANOVA object with aov. Because time is the
dependent variable and cleaner is the independent variable, we’ll set
the formula to formula = time ∼ cleaner

aov object with time as DV and cleaner as IV

cleaner.aov <- aov(formula = time ~ cleaner,

data = poopdeck)

Step 2: Look at summary tables of the ANOVA with summary()

Now, to see a full ANOVA summary table of the ANOVA object,
apply the summary() to the ANOVA object from Step 1.

summary(cleaner.aov)

Df Sum Sq Mean Sq F value Pr(>F)

cleaner 2 6057 3028 5.29 0.0053 **

Residuals 597 341511 572

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main result from our table is that we have a significant effect
of cleaner on cleaning time (F(2, 597) = 5.29, p = 0.005). However,
the ANOVA table does not tell us which levels of the independent
variable differ. In other words, we don’t know which cleaner is better
than which. To answer this,w e need to conduct a post-hoc test.

Step 3: Do pairwise comparisons with TukeyHSD()

If you’ve found a significant effect of a factor, you can then do post-
hoc tests to test the difference between each all pairs of levels of the
independent variable. There are many types of pairwise comparisons
that make different assumptions.28 One of the most common post- 28 To learn more about the logic behind

different post-hoc tests, check out the
Wikipedia page here: Post-hoc Test
Wikipedia

hoc tests for standard ANOVAs is the Tukey Honestly Significant
Difference (HSD) test.29 To do an HSD test, apply the TukeyHSD()

29 To see additional information about
the Tukey HSD test, check out the
Wikipedia page here: Tukey HSD
Wikipedia.

function to your ANOVA object as follows:

https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Tukey%27s_range_test
https://en.wikipedia.org/wiki/Tukey%27s_range_test

192 yarrr! the pirate’s guide to r

TukeyHSD(cleaner.aov)

Tukey multiple comparisons of means

95% family-wise confidence level

##

Fit: aov(formula = time ~ cleaner, data = poopdeck)

##

$cleaner

diff lwr upr p adj

b-a -0.42 -6.04 5.20 0.983

c-a -6.94 -12.56 -1.32 0.011

c-b -6.52 -12.14 -0.90 0.018

This table shows us pair-wise differences between each group pair.
The diff column shows us the mean differences between groups
(which thankfully are identical to what we found in the summary of
the regression object before), a confidence interval for the difference,
and a p-value testing the null hypothesis that the group differences
are not different.

Step 4: Look at the coefficients in a regression analysis with lm()

I almost always find it helpful to combine an ANOVA summary table
with a regression summary table. Because ANOVA is just a special
case of regression (where all the independent variables are factors),
you’ll get the same results with a regression object as you will with
an ANOVA object. However, the format of the results are different
and frequently easier to interpret.

To create a regression object, use the lm() function. Your inputs to
this function will be identical to your inputs to the aov() function

Create a regression object

cleaner.lm <- lm(formula = time ~ cleaner,

data = poopdeck)

Show summary

summary(cleaner.lm)

##

Call:

lm(formula = time ~ cleaner, data = poopdeck)

##

Residuals:

Min 1Q Median 3Q Max

-63.02 -16.60 -1.05 16.92 71.92

12: anova and factorial designs 193

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.02 1.69 39.04 <2e-16 ***

cleanerb -0.42 2.39 -0.18 0.8607

cleanerc -6.94 2.39 -2.90 0.0038 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 23.9 on 597 degrees of freedom

Multiple R-squared: 0.0174,Adjusted R-squared: 0.0141

F-statistic: 5.29 on 2 and 597 DF, p-value: 0.00526

As you can see, the regression table does not give us tests for each
variable like the ANOVA table does. Instead, it tells us how different
each level of an independent variable is from a default value. You can
tell which value of an independent variable is the default variable
just by seeing which value is missing from the table. In this case, I
don’t see a coefficient for cleaner a, so that must be the default value.

The intercept in the table tells us the mean of the default value. In
this case, the mean time of cleaner a was 66.02. The coefficients for
the other levels tell us that cleaner b is, on average 0.42 minutes faster
than cleaner a, and cleaner c is on average 6.94 minutes faster than
cleaner a. Not surprisingly, these are the same differences we saw in
the Tukey HSD test!

Multiple-way ANOVA: (y ∼ x1 + x2 + ...)

To conduct a two-way ANOVA or a Mènage á trois ‘NOVA, just in-
clude additional independent variables in the regression model
formula with the + sign. That’s it. All the steps are the same. Let’s
conduct a two-way ANOVA with both cleaner and type as indepen-
dent variables. To do this, we’ll set formula = time ∼ cleaner +

type:

Step 1: Create ANOVA object with aov()

cleaner.type.aov <- aov(formula = time ~ cleaner + type,

data = poopdeck)

Here’s the summary table:

194 yarrr! the pirate’s guide to r

Step 2: Get ANOVA table with summary()
summary(cleaner.type.aov)

Df Sum Sq Mean Sq F value Pr(>F)
cleaner 2 6057 3028 6.94 0.001 **
type 1 81620 81620 187.18 <2e-16 ***
Residuals 596 259891 436

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, given significant effects, we can proceed with post-hoc
tests:

Step 3: Conduct post-hoc tests
TukeyHSD(cleaner.type.aov)

Tukey multiple comparisons of means
95% family-wise confidence level
##
Fit: aov(formula = time ~ cleaner + type, data = poopdeck)
##
$cleaner
diff lwr upr p adj
b-a -0.42 -5.33 4.49 0.978
c-a -6.94 -11.85 -2.03 0.003
c-b -6.52 -11.43 -1.61 0.005
##
$type
diff lwr upr p adj
shark-parrot 23.3 20 26.7 0

It looks like we found significant effects of both independent
variables. The only non-significant group difference we found is
between cleaner b and cleaner a.

Again, to interpret that nature of
the results, it’s helpful to repeat the
analysis as a regression using the lm()
function:

Step 4: Look at regression coefficients
cleaner.type.lm <- lm(formula = time ~ cleaner + type,

data = poopdeck)

summary(cleaner.type.lm)

##
Call:
lm(formula = time ~ cleaner + type, data = poopdeck)
##
Residuals:
Min 1Q Median 3Q Max
-59.74 -13.79 -0.68 13.58 83.58
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.36 1.71 31.88 < 2e-16 ***
cleanerb -0.42 2.09 -0.20 0.84067
cleanerc -6.94 2.09 -3.32 0.00094 ***
typeshark 23.33 1.71 13.68 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 20.9 on 596 degrees of freedom
Multiple R-squared: 0.252,Adjusted R-squared: 0.248
F-statistic: 67 on 3 and 596 DF, p-value: <2e-16

Now we need to interpret the results
in respect to two default values (here,
cleaner = a and type = parrot). The
intercept means that the average time
for cleaner a on parrot poop was 54.357

minutes. Additionally, the average time
to clean shark poop was 23.33 minutes
slower than when cleaning parrot poop.

ANOVA with interactions: (y ∼ x1 * x2)

Interactions between variables test whether or not the effect of one
variable depends on another variable. For example, we could use an
interaction to answer the question: Does the effect of cleaners depend on
the type of poop they are used to clean? To include interaction terms in
an ANOVA, just use an asterix (*) instead of the plus (+) between the
terms in your formula.30

30 When you include an interaction
term in a regression object, R will
automatically include the main effects
as well

Let’s repeat our previous ANOVA with two independent variables,
but now we’ll include the interaction between cleaner and type. To
do this, we’ll set the formula to time ∼ cleaner * type.

12: anova and factorial designs 195

Step 1: Create ANOVA object

cleaner.type.int.aov <- aov(formula = time ~ cleaner * type,

data = poopdeck)

Step 2: Look at summary table

summary(cleaner.type.int.aov)

Df Sum Sq Mean Sq F value Pr(>F)

cleaner 2 6057 3028 7.82 0.00044 ***

type 1 81620 81620 210.86 < 2e-16 ***

cleaner:type 2 29968 14984 38.71 < 2e-16 ***

Residuals 594 229923 387

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Looks like we did indeed find a significant interaction between
cleaner and type. In other words, the effectiveness of a cleaner de-
pends on the type of poop it’s being applied to. This makes sense
given our plot of the data at the beginning of the chapter.

To understand the nature of the difference, we’ll look at the regres-
sion coefficients from a regression object:

Step 4: Calculate regression coefficients

cleaner.type.int.lm <- lm(formula = time ~ cleaner * type,

data = poopdeck)

summary(cleaner.type.int.lm)

##
Call:
lm(formula = time ~ cleaner * type, data = poopdeck)
##
Residuals:
Min 1Q Median 3Q Max
-54.28 -12.83 -0.08 12.29 74.87
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.76 1.97 23.26 < 2e-16 ***
cleanerb 8.06 2.78 2.90 0.00391 **
cleanerc 10.37 2.78 3.73 0.00021 ***
typeshark 40.52 2.78 14.56 < 2e-16 ***
cleanerb:typeshark -16.96 3.93 -4.31 1.9e-05 ***
cleanerc:typeshark -34.62 3.93 -8.80 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 19.7 on 594 degrees of freedom
Multiple R-squared: 0.338,Adjusted R-squared: 0.333

196 yarrr! the pirate’s guide to r

F-statistic: 60.8 on 5 and 594 DF, p-value: <2e-16

Again, to interpret this table, we first need to know what the
default values are. We can tell this from the coefficients that are
’missing’ from the table. Because I don’t see terms for cleanera or
typeparrot, this means that cleaner = "a" and type = "parrot" are
the defaults. Again, we can interpret the coefficients as differences
between a level and the default. It looks like for parrot poop, cleaners
b and c both take more time than cleaner a (the default). Additionally,
shark poop tends to take much longer than parrot poop to clean (the
estimate for typeshark is positive).

The interaction terms tell us how the effect of cleaners changes
when one is cleaning shark poop. The negative estimate (-16.96)
for cleanerb:typeshark means that cleaner b is, on average 16.96

minutes faster when cleaning shark poop compared to parrot poop.
Because the previous estimate for cleaner b (for parrot poop) was just
8.06, this suggests that cleaner b is slower than cleaner a for parrot
poop, but faster than cleaner a for shark poop. Same thing for cleaner
c which simply has stronger effects in both directions.

Type I, Type II, and Type III ANOVAs

It turns out that there is not just one way to calculate ANOVAs. In
fact, there are three different types - called, Type 1, 2, and 3 (or Type
I, II and III). These types differ in how they calculate variability
(specifically the sums of of squares). If your data is relatively balanced,
meaning that there are relatively equal numbers of observations
in each group, then all three types will give you the same answer.
However, if your data are unbalanced, meaning that some gropus of
data have many more observations than others, then you need to use
Type II (2) or Type III (3). For more detail on the dif-

ferent types, check out
https://mcfromnz.wordpress.com/2011/03/02/anova-
type-iiiiii-ss-explained/

The standard aov() function in base-R uses Type I sums of squares.
Therefore, it is only appropriate when your data are balanced. If
your data are unbalanced, you should conduct an ANOVA with Type
II or Type III sums of squares. To do this, you can use the Anova()

function in the car package. The Anova() function has an argument
called type that allows you to specify the type of ANOVA you want
to calculate.

In the next code chunk, I’ll calculate 3 separate ANOVAs from
the poopdeck data using the three different types. First, I’ll create a
regression object with lm():. As you’ll see, the Anova() function

requires you to enter a regression
object as the main argument, and not
a formula and dataset. That is, you
need to first create a regression object
from the data with lm() (or glm()), and
then enter that object into the Anova()
function. You can also do the same
thing with the standard aov() function

Step 1: Calculate regression object with lm()

time.lm <- lm(formula = time ~ type + cleaner,

data = poopdeck)

12: anova and factorial designs 197

Now that I’ve created the regression object time.lm, I can calculate
the three different types of ANOVAs by entering the object as the
main argument to either aov() for a Type I ANOVA, or Anova() in
the car package for a Type II or Type III ANOVA:

Type I ANOVA - aov()

time.I.aov <- aov(time.lm)

Type II ANOVA - Anova(type = 2)

time.II.aov <- car::Anova(time.lm, type = 2)

Type III ANOVA - Anova(type = 3)

time.III.aov <- car::Anova(time.lm, type = 3)

As it happens, the data in the poopdeck dataframe are perfectly
balanced (see Figure 71), so we’ll get exactly the same result for each
ANOVA type. However, if they were not balanced, then we should
not use the Type I ANOVA calculated with the aov() function.

To see if your data are balanced, you
can use the table() function:

Are observations in the poopdeck data balanced?
with(poopdeck,

table(cleaner, type))

type
cleaner parrot shark
a 100 100
b 100 100
c 100 100

As you can see, in the poopdeck data,
the observations are perfectly balanced,
so it doesn’t matter which type of
ANOVA we use to analyse the data.
Figure 71: Testing if variables are
balanced in an ANOVA.

Additional tips

Getting additional information from ANOVA objects

You can get a lot of interesting information from ANOVA objects.
To see everything that’s stored in one, run the names() command on
an ANOVA object. For example, here’s what’s in our last ANOVA
object:

names(cleaner.type.int.aov)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"

For example, the "fitted.values" contains the model fits for
the dependent variable (time) for every observation in our dataset.
We can add these fits back to the dataset with the $ operator and
assignment. For example, let’s get the model fitted values from both
the interaction model (cleaner.type.aov) and the non-interaction
model (cleaner.type.int.aov) and assign them to new columns in the
dataframe:

198 yarrr! the pirate’s guide to r

Add the fits for the interaction model to the dataframe as int.fit

poopdeck$int.fit <- cleaner.type.int.aov$fitted.values

Add the fits for the main effects model to the dataframe as me.fit

poopdeck$me.fit <- cleaner.type.aov$fitted.values

Now let’s look at the first few rows in the table to see the fits for
the first few observations.

head(poopdeck)

day cleaner type time int.fit me.fit

1 1 a parrot 47 45.8 54.4

2 1 b parrot 55 53.8 53.9

3 1 c parrot 64 56.1 47.4

4 1 a shark 101 86.3 77.7

5 1 b shark 76 77.4 77.3

6 1 c shark 63 62.0 70.7

You can use these fits to see how well (or poorly) the model(s)
were able to fit the data. For example, we can calculate how far each
model’s fits were from the true data as follows:

How far were the interaction model fits from the data on average?

mean(abs(poopdeck$int.fit - poopdeck$time))

[1] 15.4

How far were the main effect model fits from the data on average?

mean(abs(poopdeck$me.fit - poopdeck$time))

[1] 16.5

We can also see how far the mod-
els were on average from the data
separately for each condition using
dplyr.

library(dplyr)

poopdeck %>% group_by(cleaner, type) %>%
summarise(

int.fit.err = mean(abs(int.fit - time)),
me.fit.err = mean(abs(me.fit - time))

)

Source: local data frame [6 x 4]
Groups: cleaner [?]
##
cleaner type int.fit.err me.fit.err
<chr> <chr> <dbl> <dbl>
1 a parrot 14.3 16.1
2 a shark 15.5 17.4
3 b parrot 13.9 13.9
4 b shark 18.5 18.5
5 c parrot 15.5 17.3
6 c shark 14.5 16.1

The results show that the interaction
model had better fits (i.e.; lower errors)
for virtually every condition

As you can see, the interaction model was off from the data by
15.35 minutes on average, while the main effects model was off from
the data by 16.54 on average. This is not surprising as the interaction
model is more complex than the main effects only model. However,
just because the interaction model is better at fitting the data doesn’t
necessarily mean that the interaction is either meaningful or reliable.

12: anova and factorial designs 199

Repeated measures (linear mixed-effects) ANOVA using the lm4 package

If you are conducting an analyses where you’re repeating measure-
ments over one or more third variables, like giving the same partici-
pant different tests, you should do a mixed-effects regression analysis.
To do this, you should use the lmer function in the lme4 package.
For example, in our poopdeck data, we have repeated measurements
for days. That is, on each day, we had 6 measurements. Now, it’s
possible that the overall cleaning times differed depending on the day.
We can account for this by including random intercepts for day by
adding the (1|day) term to the formula specification.31 31 For more tips on mixed-

effects analyses, check out
this great tutorial by Bodo Winter
http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf# install.packages(lme4) # If you don't have the package already

library(lme4)

Calculate a mixed-effects regression on time with

Two fixed factors (cleaner and type)

And one repeated measure (day)

my.mod <- lmer(formula = time ~ cleaner + type + (1|day),

data = poopdeck)

http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf

200 yarrr! the pirate’s guide to r

Test your R Might!

For the following questions, use the pirates dataframe in the yarrr
package

1. Is there a significant relationship between a pirate’s favorite pixar
movie and the number of tattoos (s)he has? Conduct an appro-
priate ANOVA with fav.pixar as the independent variable, and
tattoos as the dependent variable. If there is a significant rela-
tionship, conduct a post-hoc test to determine which levels of the
independent variable(s) differ.

2. Is there a significant relationship between a pirate’s favorite pirate
and how many tattoos (s)he has? Conduct an appropriate ANOVA
with favorite.pirate as the independent variable, and tattoos as
the dependent variable. If there is a significant relationship, con-
duct a post-hoc test to determine which levels of the independent
variable(s) differ.

3. Now, repeat your analysis from the previous two questions, but in-
clude both independent variables fav.pixar and favorite.pirate

in the ANOVA. Do your conclusions differ when you include both
variables?

4. Finally, test if there is an interaction between fav.pixar and
favorite.pirate on number of tattoos.

13: Regression

Pirates like diamonds. Who doesn’t?! But as much as pirates love
diamonds, they hate getting ripped off. For this reason, a pirate
needs to know how to accurately assess the value of a diamond. For
example, how much should a pirate pay for a diamond with a weight
of 2.0 grams, a clarity value of 1.0, and a color gradient of 4 out of
10? To answer this, we’d like to know how the attributes of diamonds
(e.g.; weight, clarity, color) relate to its value. We can get these values
using linear regression.

Figure 72: Insert funny caption here.

The Linear Model

The linear model is easily the most famous and widely used model
in all of statistics. Why? Because it can apply to so many interesting
research questions where you are trying to predict a continuous
variable of interest (the response or dependent variable) on the basis of
one or more other variables (the predictor or independent variables).

The linear model takes the following form, where the x values
represent the predictors, while the beta values represent weights.

y = β0 + β1x1 + β2x2 + ...βnxn

For example, we could use a regression model to understand
how the value of a diamond relates to two independent variables:
its weight and clarity. In the model, we could define the value of
a diamond as βweight × weight + βclarity × clarity. Where βweight

indicates how much a diamond’s value changes as a function of its
weight, and βclarity defines how much a diamond’s value change as a
function of its clarity.

Linear regression with lm()

To estimate the beta weights of a linear model in R, we use the lm()

function. The function has three key arguments: formula, and data

202 yarrr! the pirate’s guide to r

lm()

formula

A formula in a form y ∼ x1 + x2 + ..., where y is the dependent
variable, and x1, x2, ... are the independent variables. If you want
to include all columns (excluding y) as independent variables, just
enter y ∼ .

data

The dataframe containing the columns specified in the formula.

Estimating the value of diamonds with lm()

We’ll start with a simple example using a dataset in the yarrr package
called diamonds. The dataset includes data on 150 diamonds sold at
an auction. Here are the first few rows of the dataset

library(yarrr)

head(diamonds)

weight clarity color value
9.3 0.88 4 182

11.1 1.05 5 191

8.7 0.85 6 176

10.4 1.15 5 195

10.6 0.92 5 182

12.3 0.44 4 183

Our goal is to come up with a linear model we can use to estimate
the value of each diamond (DV = value) as a linear combination
of three independent variables: its weight, clarity, and color. The
linear model will estimate each diamond’s value using the following
equation:

β Int + βweight × weight + βclarity × clarity + βcolor × color

13: regression 203

where βweight is the increase in value for each increase of 1 in
weight, βclarity is the increase in value for each increase of 1 in clarity
(etc.). Finally, β Int is the baseline value of a diamond with a value of
0 in all independent variables.

To estimate each of the 4 weights, we’ll use lm(). Because value is
the dependent variable, we’ll specify the formula as formula = value

∼ weight + clarity + color. We’ll assign the result of the function
to a new object called diamonds.lm:

If you want to include all variables
in a dataframe in the regression, you
don’t need to type the name of every
independent variable in the formula
argument, just enter a period (.) and R
will assume you are using all variables.

Shorten your formula with . to include
all variables:

diamonds.lm <- lm(formula = value ~ .,
data = diamonds)

Create a linear model of diamond values

DV = value, IVs = weight, clarity, color

diamonds.lm <- lm(formula = value ~ weight + clarity + color,

data = diamonds) Here are the main components of
the summary of our regression object
diamonds.lm"

Call This just repeats our arguments to
the lm() function

Residuals Summary statistics of how far away
the model fits are away from the
true values. A residual is defined as
the model fit minus the true value.
For example, the median residual
of −0.11 means that the median
difference between the model fits
and the true values is −0.11.

Coefficients Estimates and inferential statistics
on the beta values.

To see the results of the regression analysis, including estimates for
each of the beta values, we’ll use the summary function:

Print summary statistics from diamond model
summary(diamonds.lm)

##
Call:
lm(formula = value ~ weight + clarity + color, data = diamonds)
##
Residuals:
Min 1Q Median 3Q Max
-10.405 -3.547 -0.113 3.255 11.046
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 148.335 3.625 40.92 <2e-16 ***
weight 2.189 0.200 10.95 <2e-16 ***
clarity 21.692 2.143 10.12 <2e-16 ***
color -0.455 0.365 -1.25 0.21

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.7 on 146 degrees of freedom
Multiple R-squared: 0.637,Adjusted R-squared: 0.63
F-statistic: 85.5 on 3 and 146 DF, p-value: <2e-16

Here, we can see from the summary table that the model esti-
mated β Int (the intercept), to be 148.34, βweight to be 2.19, βclarity to
be 21.69, and , βcolor to be −0.45. You can see the full linear model in
Figure 73 below:

You can access lots of different aspects of the regression object. To
see what’s inside, use names()

204 yarrr! the pirate’s guide to r

Linear Model of Diamond Values

148.3 + 2.19 × xweight + 21.69 × xclarity + (− 0.46) × xcolor = Value

Βintercept Βweight Βclarity Βcolor

Figure 73: A linear model estimating
the values of diamonds based on their
weight, clarity, and color.

Which components are in the regression object?

names(diamonds.lm)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

For example, to get the estimated coefficients from the model, just
access the coefficients attribute:

The coefficients in the diamond model

diamonds.lm$coefficients

(Intercept) weight clarity color

148.3354 2.1894 21.6922 -0.4549

If you want to access the entire statistical summary table of the
coefficients, you just need to access them from the summary object:

Coefficient statistics in the diamond model

summary(diamonds.lm)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.3354 3.6253 40.917 7.009e-82

weight 2.1894 0.2000 10.948 9.706e-21

clarity 21.6922 2.1429 10.123 1.411e-18

color -0.4549 0.3646 -1.248 2.141e-01

You can use the fitted values from a
regression object to plot the relationship
between the true values and the model
fits. If the model does a good job in
fitting the data, the data should fall on
a diagonal line:

Plot the relationship between true diamond values
and linear model fitted values

plot(x = diamonds$value,
y = diamonds.lm$fitted.values,
xlab = "True Values",
ylab = "Model Fitted Values",
main = "Regression fits of diamond values"
)

abline(b = 1, a = 0)

175 185 195 205

17
5

18
5

19
5

Regression fits of diamond values

True Values

M
od

el
 F

itt
ed

 V
al

ue
s

Getting model fits with fitted.values

To see the fitted values from a regression object (the values of the de-
pendent variable predicted by the model), access the fitted.values

attribute from a regression object with $fitted.values.
Here, I’ll add the fitted values from the diamond regression model

as a new column in the diamonds dataframe:

13: regression 205

Add the fitted values as a new column in the dataframe

diamonds$value.lm <- diamonds.lm$fitted.values

Show the result

head(diamonds)

weight clarity color value value.lm

1 9.35 0.88 4 182.5 186.1

2 11.10 1.05 5 191.2 193.1

3 8.65 0.85 6 175.7 183.0

4 10.43 1.15 5 195.2 193.8

5 10.62 0.92 5 181.6 189.3

6 12.35 0.44 4 182.9 183.1

According to the model, the first diamond, with a weight of 9.35, a
clarity of 0.88, and a color of 4 should have a value of 186.08. As we
can see, this is not far off from the true value of 182.5.

Using predict() to predict new data from a model

Once you have created a regression model with lm(), you can use
it to easily predict results from new datasets using the predict()

function.
For example, let’s say I discovered 3 new diamonds with the

following characteristics:

weight clarity color
20 1.5 5

10 0.2 2

15 5.0 3

I’ll use the predict() function to predict the value of each of these
diamonds using the regression model diamond.lm that I created
before. The two main arguments to predict() are object – the regres-
sion object we’ve already defined), and newdata – the dataframe of
new data: The dataframe that you use in the

newdata argument to predict() must
have column names equal to the names
of the coefficients in the model. If the
names are different, the predict()
function won’t know which column of
data applies to which coefficient

Create a dataframe of new diamond data

diamonds.new <- data.frame(weight = c(12, 6, 5),

clarity = c(1.3, 1, 1.5),

color = c(5, 2, 3))

Predict the value of the new diamonds using

the diamonds.lm regression model

206 yarrr! the pirate’s guide to r

predict(object = diamonds.lm, # The regression model

newdata = diamonds.new) # dataframe of new data

1 2 3

200.5 182.3 190.5

This result tells us the the new diamonds are expected to have
values of 200.53, 182.25, and 190.46 respectively according to our
regression model.

Including interactions in models: dv ∼ x1 * x2

To include interaction terms in a regression model, just put an asterix
(*) between the independent variables.

For example, to create a regression model on the diamonds data
with an interaction term between weight and clarity, we’d use the
formula formula = value ∼ weight * clarity:

Create a regression model with interactions between

IVS weight and clarity

diamonds.int.lm <- lm(formula = value ~ weight * clarity,

data = diamonds)

Show summary statistics of model coefficients

summary(diamonds.int.lm)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 157.472 10.569 14.899 0.000

weight 0.979 1.070 0.915 0.362

clarity 9.924 10.485 0.947 0.345

weight:clarity 1.245 1.055 1.180 0.240

Center variables before computing interactions!

Hey what happened? Why are all the variables now non-significant?
Does this mean that there is really no relationship between weight
and clarity on value after all? No. Recall from your second-year
pirate statistics class that when you include interaction terms in a
model, you should always center the independent variables first.
Centering a variable means simply subtracting the mean of the
variable from all observations.

In the following code, I’ll repeat the previous regression, but
first I’ll create new centered variables weight.c and clarity.c, and

13: regression 207

then run the regression on the interaction between these centered
variables:

Create centered versions of weight and clarity

diamonds$weight.c <- diamonds$weight - mean(diamonds$weight)

diamonds$clarity.c <- diamonds$clarity - mean(diamonds$clarity)

Create a regression model with interactions of centered variables

diamonds.int.lm <- lm(formula = value ~ weight.c * clarity.c,

data = diamonds)

Print summary

summary(diamonds.int.lm)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 189.402 0.383 494.39 0.00

weight.c 2.223 0.199 11.18 0.00

clarity.c 22.248 2.134 10.43 0.00

weight.c:clarity.c 1.245 1.055 1.18 0.24

Hey that looks much better! Now we see that the main effects are
significant and the interaction is non-significant.

208 yarrr! the pirate’s guide to r

Comparing regression models with anova()

A good model not only needs to fit data well, it also needs to be
parsimonious. That is, a good model should be only be as complex
as necessary to describe a dataset. If you are choosing between a very
simple model with 1 IV, and a very complex model with, say, 10 IVs,
the very complex model needs to provide a much better fit to the
data in order to justify its increased complexity. If it can’t, then the
more simpler model should be preferred.

To compare the fits of two models, you can use the anova() func-
tion with the regression objects as two separate arguments. The
anova() function will take the model objects as arguments, and
return an ANOVA testing whether the more complex model is sig-
nificantly better at capturing the data than the simpler model. If
the resulting p-value is sufficiently low (usually less than 0.05), we
conclude that the more complex model is significantly better than
the simpler model, and thus favor the more complex model. If the
p-value is not sufficiently low (usually greater than 0.05), we should
favor the simpler model.

Let’s do an example with the diamonds dataset. I’ll create three
regression models that each predict a diamond’s value. The models
will differ in their complexity – that is, the number of independent
variables they use. diamonds.mod1 will be the simplest model with
just one IV (weight), diamonds.mod2 will include 2 IVs (weight and
clarity) while diamonds.mod3 will include three IVs (weight, clarity,
and color).

model 1: 1 IV (only weight)

diamonds.mod1 <- lm(value ~ weight, data = diamonds)

Model 2: 2 IVs (weight AND clarity)

diamonds.mod2 <- lm(value ~ weight + clarity, data = diamonds)

Model 3: 3 IVs (weight AND clarity AND color)

diamonds.mod3 <- lm(value ~ weight + clarity + color, data = diamonds)

Now let’s use the anova() function to compare these models
and see which one provides the best parsimonious fit of the data.
First, we’ll compare the two simplest models: model 1 with model
2. Because these models differ in the use of the clarity IV (both
models use weight), this ANVOA will test whether or not including
the clarity IV leads to a significant improvement over using just the
weight IV:

13: regression 209

Compare model 1 to model 2

anova(diamonds.mod1, diamonds.mod2)

Analysis of Variance Table

##

Model 1: value ~ weight

Model 2: value ~ weight + clarity

Res.Df RSS Df Sum of Sq F Pr(>F)

1 148 5569

2 147 3221 1 2347 107 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you can see, the result shows a Df of 1 (indicating that the
more complex model has one additional parameter), and a very small
p-value (< .001). This means that adding the clarity IV to the model
did lead to a significantly improved fit over the model 1.

Next, let’s use anova() to compare model 2 and model 3. This will
tell us whether adding color (on top of weight and clarity) further
improves the model:

Compare model 2 to model 3

anova(diamonds.mod2, diamonds.mod3)

Analysis of Variance Table

##

Model 1: value ~ weight + clarity

Model 2: value ~ weight + clarity + color

Res.Df RSS Df Sum of Sq F Pr(>F)

1 147 3221

2 146 3187 1 34 1.56 0.21

The result shows a non-significant result (p = 0.21). Thus, we
should reject model 3 and stick with model 2 with only 2 IVs.

You don’t need to compare models that only differ in one IV – you
can also compare models that differ in multiple DVs. For example,
here is a comparison of model 1 (with 1 IV) to model 3 (with 3 IVs):

Comapre model 1 to model 3

anova(diamonds.mod1, diamonds.mod3)

Analysis of Variance Table

##

Model 1: value ~ weight

Model 2: value ~ weight + clarity + color

210 yarrr! the pirate’s guide to r

Res.Df RSS Df Sum of Sq F Pr(>F)

1 148 5569

2 146 3187 2 2381 54.5 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result shows that model 3 did indeed provide a significantly
better fit to the data compared to model 1.32 32 However, as we know from our

previous analysis, model 3 is not
significantly better than model 2

13: regression 211

Regression on non-Normal data with glm()

We can use standard regression with lm() when your dependent vari-
able is Normally distributed (more or less). When your dependent
variable does not follow a nice bell-shaped Normal distribution, you
need to use the Generalized Linear Model (GLM). the GLM is a more
general class of linear models that change the distribution of your
dependent variable. In other words, it allows you to use the linear
model even when your dependent variable isn’t a normal bell-shape.
Here are 4 of the most common distributions you can can model with
glm():

Normal

5 10 15

Continuous, bell−shaped

10.76
10.15

11.07
9.58

9.62
8.95

8.71
10.52

9.92
8.93

Poisson

Positive Integers

1 3 5 7 9

2
5

3
0

2
2

5
3

0
2

Binomial

Only 0s and 1s

0 1

0
1

0
0

1
0

1
0

0
1

Gamma

F
re

qu
en

cy

0 2 4 6 8 10

Continuous, positive

2.52
1.95

0.62
4.72

2.36
2.52

1.95
0.62

4.72
2.36

212 yarrr! the pirate’s guide to r

You can use the glm() function just like lm(). To specify the distri-
bution of the dependent variable, use the family argument.

glm()

function, data, subset

The same arguments as in lm()

family

One of the following strings, indicating the link function for the
general linear model

• "binomial": Binary logistic regression, useful when the response
is either 0 or 1.

• "gaussian": Standard linear regression. Using this family will
give you the same result as lm()

• "Gamma": Gamma regression, useful for exponential response
data

• "inverse.gaussian": Inverse-Gaussian regression, useful when
the dv is strictly positive and skewed to the right.

• "poisson": Poisson regression, useful for count data. For ex-
ample, “How many parrots has a pirate owned over his/her
lifetime?"

Logistic regression with glm(family = binomial)

The most common non-normal regression analysis is logistic regres-
sion, where your dependent variable is just 0s and 1. To do a logistic
regression analysis with glm(), use the family = binomial argument.

Logit
logit.fun <- function(x) {1 / (1 + exp(-x))}

curve(logit.fun,
from = -3,
to = 3,
lwd = 2,
main = "Inverse Logit",
ylab = "p(y = 1)",
xlab = "Logit(x)"
)

abline(h = .5, lty = 2)
abline(v = 0, lty = 1)

−3 −2 −1 0 1 2 3

0.
2

0.
4

0.
6

0.
8

Inverse Logit

Logit(x)

p(
y

=
 1

)

Figure 74: The inverse logit function
used in binary logistic regression to
convert logits to probabilities.

Let’s run a logistic regression on the diamonds dataset. First, I’ll
create a binary variable called value.g175 indicating whether the
value of a diamond is greater than 175 or not. Then, I’ll conduct a
logistic regression with our new binary variable as the dependent
variable. We’ll set family = binomial to tell glm() that the dependent
variable is binary.

Create a binary variable indicating whether or not

a diamond's value is greater than 190

diamonds$value.g190 <- diamonds$value > 190

13: regression 213

Conduct a logistic regression on the new binary variable

diamond.glm <- glm(formula = value.g190 ~ weight + clarity + color,

data = diamonds,

family = binomial)

Here are the resulting coefficients:

Print coefficients from logistic regression

summary(diamond.glm)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -18.8009 3.4634 -5.428 5.686e-08

weight 1.1251 0.1968 5.716 1.088e-08

clarity 9.2910 1.9629 4.733 2.209e-06

color -0.3836 0.2481 -1.547 1.220e-01

Just like with regular regression with lm(), we can get the fitted
values from the model and put them back into our dataset to see how
well the model fit the data: Looking at the first few observations, it

looks like the probabilities match the
data pretty well. For example, the first
diamond with a value of 182.5 had a
fitted probability of just 0.16 of being
valued greater than 190. In contrast,
the second diamond, which had a
value of 191.2 had a much higher fitted
probability of 0.82.

.

Add the fitted values from the GLM back to the data

diamonds$pred.g190 <- diamond.glm$fitted.values

Look at the first few rows (of the named columns)

head(diamonds[c("weight", "clarity", "color", "value", "pred.g190")])

weight clarity color value pred.g190

1 9.35 0.88 4 182.5 0.16252

2 11.10 1.05 5 191.2 0.82130

3 8.65 0.85 6 175.7 0.03008

4 10.43 1.15 5 195.2 0.84559

5 10.62 0.92 5 181.6 0.44455

6 12.35 0.44 4 182.9 0.08688

Just like we did with regular regression, you can use the predict()

function along with the results of a glm() object to predict new data.
Let’s use the diamond.glm object to predict the probability that the
new diamonds will have a value greater than 190:

Predict the 'probability' that the 3 new diamonds

will have a value greater than 190

predict(object = diamond.glm,

newdata = diamonds.new)

214 yarrr! the pirate’s guide to r

1 2 3

4.8605 -3.5265 -0.3898

What the heck, these don’t look like probabilities! True, they’re
not. They are logit-transformed probabilities. To turn them back into
probabilities, we need to invert them by applying the inverse logit
function (see Figure ??).

Get logit predictions of new diamonds

logit.predictions <- predict(object = diamond.glm,

newdata = diamonds.new

)

Apply inverse logit to transform to probabilities

(See Equation in the margin)

prob.predictions <- 1 / (1 + exp(-logit.predictions))

Print final predictions!

prob.predictions

1 2 3

0.99231 0.02857 0.40376

So, the model predicts that the probability that the three new
diamonds will be valued over 190 is 99.23%, 2.86%, and 40.38%
respectively.

Getting an ANOVA from a regression model with aov()

Once you’ve created a regression object with lm() or glm(), you can
summarize the results in an ANOVA table with aov():

Create ANOVA object from regression

diamonds.aov <- aov(diamonds.lm)

Print summary results

summary(diamonds.aov)

Df Sum Sq Mean Sq F value Pr(>F)

weight 1 3218 3218 147.40 <2e-16 ***

clarity 1 2347 2347 107.53 <2e-16 ***

color 1 34 34 1.56 0.21

Residuals 146 3187 22

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13: regression 215

Additional Tips

Adding a regression line to a plot

You can easily add a regression line to a scatterplot. To do this, just
put the regression object you created with lm as the main argument
to abline(). For example, the following code will create the scat-
terplot on the right (Figure 75) showing the relationship between a
diamond’s weight and its value including a red regression line:

6 8 10 12 14

17
5

18
5

19
5

20
5

Adding a regression line with abline()

Weight

V
al

ue

Figure 75: Adding a regression line to a
scatterplot using abline()

Scatterplot of diamond weight and value

plot(x = diamonds$weight,

y = diamonds$value,

xlab = "Weight",

ylab = "Value",

main = "Adding a regression line with abline()"

)

Calculate regression model

diamonds.lm <- lm(formula = value ~ weight,

data = diamonds)

Add regression line

abline(diamonds.lm,

col = "red", lwd = 2)

216 yarrr! the pirate’s guide to r

Transforming skewed variables prior to standard regression
The distribution of movie revenus is highly
skewed.
hist(movies$revenue.all,

main = "Movie revenue\nBefore log-transformation")

Movie revenue
Before log−transformation

movies$revenue.all

F
re

qu
en

cy

0 500 1500 2500

0
10

00
30

00

Figure 76: Distribution of movie
revenues

If you have a highly skewed variable that you want to include in
a regression analysis, you can do one of two things. Option 1 is
to use the general linear model glm() with an appropriate family
(like family = gamma). Option 2 is to do a standard regression anal-
ysis with lm(), but before doing so, transforming the variable into
something less skewed. For highly skewed data, the most common
transformation is a log-transformation.

For example, look at the distribution of movie revenues in the
movies dataset in the margin Figure 76:

As you can see, these data don’t look Normally distributed at all.
There are a few movies (like Avatar) that just an obscene amount
of money, and many movies that made much less. If we want to
conduct a standard regression analysis on these data, we need to
create a new log-transformed version of the variable. In the following
code, I’ll create a new variable called revenue.all.lt defined as the
logarithm of revenue.all

Create a new log-transformed version of movie revenue

movies$revenue.all.lt <- log(movies$revenue.all)

In Figure 77 you can see a histogram of the new log-transformed
variable. It’s still skewed, but not nearly as badly as before, so I
would be ok using this variable in a standard regression analysis
with lm().

Distribution of log-transformed
revenue is much less skewed

hist(movies$revenue.all.lt,
main = "Log-transformed Movie revenue")

Log−transformed Movie revenue

movies$revenue.all.lt

F
re

qu
en

cy

3 4 5 6 7 8

0
20

0
60

0
10

00

Figure 77: Distribution of movie
revenues

13: regression 217

Test your Might! A ship auction

The following questions apply to the auction dataset in the yarrr
package. This dataset contains information about 1,000 ships sold at a
pirate auction. Here’s how the first few rows of the dataframe should
look:

cannons rooms age condition color style jbb price
18 20 140 5 red classic 3976 3502

21 21 93 5 red modern 3463 2955

20 18 48 2 plum classic 3175 3281

24 20 81 5 salmon classic 4463 4400

20 21 93 2 red modern 2858 2177

21 19 60 6 red classic 4420 3792

1. The column jbb is the "Jack’s Blue Book" value of a ship. Create a
regression object called jbb.cannon.lm predicting the JBB value of
ships based on the number of cannons it has. Based on your result,
how much value does each additional cannon bring to a ship?

2. Repeat your previous regression, but do two separate regressions:
one on modern ships and one on classic ships. Is there relationship
between cannons and JBB the same for both types of ships?

3. Is there a significant interaction between a ship’s style and its age
on its JBB value? If so, how do you interpret the interaction?

4. Create a regression object called jbb.all.lm predicting the JBB
value of ships based on cannons, rooms, age, condition, color, and
style. Which aspects of a ship significantly affect its JBB value?

5. Create a regression object called price.all.lm predicting the ac-
tual selling value of ships based on cannons, rooms, age, condition,
color, and style. Based on the results, does the JBB do a good job
of capturing the effect of each variable on a ship’s selling price?

6. Repeat your previous regression analysis, but instead of using
the price as the dependent variable, use the binary variable
price.gt.3500 indicating whether or not the ship had a selling price
greater than 3500. Call the new regression object price.all.blr.
Make sure to use the appropriate regression function!!.

7. Using price.all.lm, predict the selling price of the 3 new ships
displayed on the right in Figure 7

cannons rooms age condition color style
12 34 43 7 black classic
8 26 54 3 black modern

32 65 100 5 red modern

Figure 78: Data from 3 new ships about
to be auctioned.8. Using price.all.blr, predict the probability that the three new

ships will have a selling price greater than 3500.

14: Writing your own functions

Why would you want to write your own function?

Throughout this book, you have been using tons of functions either
built into base-R – like mean(), hist(), t.test(), or written by other
people and saved in packages – like pirateplot() and apa()in the
yarrr package. However, because R is a complete programming
language, you can easily write your own functions that perform
specific tasks you want.

In the following code, I will define a
new function called piratehist():

piratehist <- function(x, ...) {

Create a customized histogram
hist(x,

col = gray(.5, .1),
border = "white",
yaxt = "n",
ylab = "",
...)

Calculate the conf interval
ci <- t.test(x)$conf.int

Define and add top-text
top.text <- paste(

"Mean = ", round(mean(x), 2),
" (95% CI [", round(ci[1], 2),
", ", round(ci[2], 2),
"]), SD = ", round(sd(x), 2),
sep = "")

mtext(top.text, side = 3)
}

Now that I’ve defined the pirate
hist() function, let’s evaluate it on a
vector of data!

piratehist(pirates$age,
xlab = "Age",
main = "Pirates' Ages")

Pirates' Ages

Age

10 20 30 40 50

Mean = 27.36 (95% CI [27, 27.72]), SD = 5.79

Figure 79: The piratehist() function.

For example, let’s say you think the standard histograms made
with hist() are pretty boring. Instead, you’d like to you’d like use
a fancier version with a more modern design that also displays
statistical information. Now of course you know from chapter XX
that you can customize plots in R any way that you’d like by adding
customer parameter values like col, bg (etc.). However, it would
be a pain to have to specify all of these custom parameters every
time you want to create your custom histogram. To accomplish this,
you can write your own custom function called piratehist() that
automatically includes your custom specifications.

In Figure 79 I’ve written the piratehist() function. The function
takes a vector of data (plus optional arguments indicated by ...),
creates a light gray histogram, and adds text to the top of the figure
indicating the mean and 95% CI of the data. After defining the
function, I evaluated it on a vector of data (the age of pirates in
the pirates dataset. As you can see, the resulting plot has all the
customisations I specified in the function. So now, anytime I want
to make a fancy pirate-y histogram, I can just use the piratehist()
function rather than having to always write all the raw code from
scratch.

Of course, functions are limited to creating plots...oh no. You can
write a function to do anything that you can program in R. Just think
about a function as a container for R-code stored behind the scenes
for you to use without having to see (or write) the code again. Now,
if there’s anything you like to do repeatedly in R (like making mul-
tiple customized plots, you can define the code just once in a new

220 yarrr! the pirate’s guide to r

function rather than having to write it all again and again.Some of
you reading this will quickly see how how writing your own func-
tions can save you tons of time. For those of you who haven’t...trust
me, this is a big deal.

Figure 80: Functions. They’re kind of a
big deal.

The basic structure of a function

A function is simply an object that (usually) takes some input, per-
forms some action (executes some R code), and then (usually) returns
some output. This might sound complicated, but you’ve been using
functions pre-defined in R throughout this book. For example, the
function mean() takes a numeric vector as an argument, and then
returns the arithmetic mean of that vector as a single scalar value.

Your custom functions will have the following 4 attributes:

1. Name: What is the name of your function? You can give it any
valid object name. However, be careful not to use names of exist-
ing functions or R might get confused.

2. Inputs: What are the inputs to the function? Does it need a vector
of numeric data? Or some text? You can specify as many inputs as
you want.

3. Actions: What do you want the function to do with the inputs?
Create a plot? Calculate a statistic? Run a regression analysis? This
is where you’ll write all the real R code behind the function.

4. Output: What do you want the code to return when it’s finished
with the actions? Should it return a scalar statistic? A vector of
data? A dataframe?

Here’s how your function will look in R. When creating func-
tions, you’ll use two new functions, called function() and return(). Yes, you use functions to create func-

tions! Very Inception-yYou’ll put the function inputs as arguments to the function() func-
tion, and the output(s) as argument(s) to the return() function.

NAME <- function(INPUTS) {

ACTIONS

return(OUTPUT)

}

14: writing your own functions 221

A simple example

Let’s create a very simple example of a function. We’ll create a func-
tion called my.mean that does the exact same thing as the mean()
function in R. This function will take a vector x as an argument, cre-
ates a new vector called output that is the mean of all the elements
of x (by summing all the values in x and dividing by the length of x),
then return the output object to the user.

my.mean <- function(x) { # Single input called x

output <- sum(x) / length(x) # Calculate output

return(output) # Return output to the user after running the function

}

Try running the code above. When you do, nothing obvious hap-
pens. However, R has now stored the new function my.mean() in the
current working directory for later use. To use the function, we can
then just call our function like any other function in R. Let’s call our
new function on some data and make sure that it gives us the same
result as mean():

If you ever want to see the exact
code used to generate a function, you
can just call the name of the function
without the parentheses. For example,
to see the code underlying our new
function my.mean you can run the
following:

my.mean

function(x) { # Single input called x
##
output <- sum(x) / length(x) # Calculate output
##
return(output) # Return output to the user after running the function
##
}

data <- c(3, 1, 6, 4, 2, 8, 4, 2)

my.mean(data)

[1] 3.75

mean(data)

[1] 3.75

As you can see, our new function my.mean() gave the same result
as R’s built in mean() function! Obviously, this was a bit of a waste
of time as we simply recreated a built-in R function. But you get the
idea...

Using multiple inputs

You can create functions with as many inputs as you’d like (even 0!).
Let’s do an example. We’ll create a function called oh.god.how.much.did.i.spend
that helps hungover pirates figure out how much gold they spent af-
ter a long night of pirate debauchery. The function will have three
inputs: grogg: the number of mugs of grogg the pirate drank, port:
the number of glasses of port the pirate drank, and crabjuice: the
number of shots of fermented crab juice the pirate drank. Based on

222 yarrr! the pirate’s guide to r

this input, the function will calculate how much gold the pirate spent.
We’ll also assume that a mug of grogg costs 1, a glass of port costs 3,
and a shot of fermented crab juice costs 10.

oh.god.how.much.did.i.spend <- function(grogg,

port,

crabjuice) {

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)

}

Now let’s test our new function with a few different values for the
inputs grogg, port, and crab juice. How much gold did Tamara, who
had had 10 mugs of grogg, 3 glasses of wine, and 0 shots of crab juice
spend?

oh.god.how.much.did.i.spend(grogg = 10,

port = 3,

crabjuice = 0)

[1] 19

Looks like Tamara spent 19 gold last night. Ok, now how about
Cosima, who didn’t drink any grogg or port, but went a bit nuts on
the crab juice:

oh.god.how.much.did.i.spend(grogg = 0,

port = 0,

crabjuice = 7)

[1] 70

Cosima’s taste for crab juice set her back 70 gold pieces.

Including default values

When you create functions with many inputs, you’ll probably want
to start adding default values. Default values are input values which
the function will use if the user does not specify their own. Including Most functions that you’ve used so far

have default values. For example, the
hist() function will use default values
for inputs like main, xlab, (etc.) if you
don’t specify them

defaults can save the user a lot of time because it keeps them from
having to specify every possible input to a function.

To add a default value to a function input, just include = DEFAULT
after the input. For example, let’s add a default value of 0 to each
argument in the oh.god.how.much.did.i.spend function. By doing

14: writing your own functions 223

this, R will set any inputs that the user does not specify to 0 – in
other words, it will assume that if you don’t tell it how many drinks
of a certain type you had, then you must have had 0.

oh.god.how.much.did.i.spend <- function(grogg = 0,

port = 0,

crabjuice = 0) {

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)

}

Let’s test the new version of our function with data from Hyejeong,
who had 5 glasses of port but no grogg or crab juice. Because 0 is the
default, we can just ignore these arguments:

oh.god.how.much.did.i.spend(port = 5)

[1] 15

Looks like Hyejeong only spent 15 by sticking with port.

If you have a default value for ev-
ery input, you can even call the
function without specifying any
inputs – R will set all of them to
the default. For example, if we call
oh.god.how.much.did.i.spend with-
out specifying any inputs, R will set
them all to 0 (which should make the
result 0).

oh.god.how.much.did.i.spend()

[1] 0

Using if/then statements in functions

Figure 81: Don’t wear a tuxedo to a job
interview for a janitorial position like
Will Ferrell and John C. Reilly did in
Step Brothers.

A good function is like a person who knows what to wear for each
occasion – it should put on different things depending on the occa-
sion. In other words, rather than doing (i.e.; wearing) a tuxedo for
every event, a good dress() function needs to first make sure that
the input was (event == "ball") rather than (event == "jobinter-
view"). To selectively evaluate code based on criteria, R uses if-then
statements

To run an if-then statement in R, we use the if() {} function.
The function has two main elements, a logical test in the parentheses,
and conditional code in curly braces. The code in the curly braces is
conditional because it is only evaluated if the logical test contained in
the parentheses is TRUE. If the logical test is FALSE, R will completely
ignore all of the conditional code.

Let’s put some simple if() {} statements in a new function called
is.it.true(). The function will take a single input x. If the input x
is TRUE, the function will print one sentence. If the input x is FALSE, it
will return another sentence:

is.it.true <- function(x) {

224 yarrr! the pirate’s guide to r

if(x == TRUE) {print("x was true!")}

if(x == FALSE) {print("x was false!")}

}

Let’s try evaluating the function on a few different inputs:

is.it.true(TRUE)

[1] "x was true!"

is.it.true(FALSE)

[1] "x was false!"

Of course, you don’t have to explicitly enter the value TRUE or
FALSE as a logical test. You can put any R code in the logical test
of an if statement as long as it returns a logical value of TRUE or
FALSE.

is.it.true(10 > 1)

[1] "x was true!"

is.it.true(1 < 10)

[1] "x was true!"

Using if() statements in your functions can allow you to do some
really neat things. Let’s create a function called show.me() that takes
a vector of data, and either creates a plot, tells the user some statistics,
or tells a joke! The function has two inputs: x – a vector of data, and
what – a string value that tells the function what to do with x. We’ll
set the function up to accept three different values of what – either
"plot", which will plot the data, "stats", which will return basic
statistics about the vector, or "tellmeajoke", which will return a
funny joke!

show.me <- function(x, what) {

if(what == "plot") {

hist(x, yaxt = "n", ylab = "", border = "white",
col = "skyblue", xlab = "",
main = "Ok! I hope you like the plot...")

}

if(what == "stats") {

14: writing your own functions 225

print(paste("Yarr! The mean of this data be ",
round(mean(x), 2),

" and the standard deviation be ",
round(sd(x), 2),
sep = ""))

}

if(what == "tellmeajoke") {

print("I am a pirate, not your joke monkey.")

}
}

In the margin figure 82, I test the show.me() function with different
arguments to what.

show.me(x = pirates$beard.length,
what = "plot")

Ok! I hope you like the plot...

0 10 20 30 40

Looks good! Now let’s get the same
function to tell us some statistics about
the data by setting what = "stats":

show.me(x = pirates$beard.length,
what = "stats")

[1] "Yarr! The mean of this data be 10.38 and the standard deviation be 10.31"

Phew that was exhausting, I need
to hear a funny joke. Let’s set what =
"tellmeajoke":

show.me(what = "tellmeajoke")

[1] "I am a pirate, not your joke monkey."

That wasn’t very funny.
Figure 82: The show.me() function in
action.

Additional Tips

View the code underlying any function

Because R is totally open-source and free to use, you can view the
code underlying most33 functions by just evaluating the name of

33 You can’t see the code for very basic
functions in R like mean() or t.test()

the function (without any parentheses or arguments). For example,
the yarrr package contains a function called transparent() that
converts standard colors into transparent colors. To see the code
contained in the function, just evaluate its name:

Show me the code in the transparent() function
transparent

function (orig.col = "red", trans.val = 1, maxColorValue = 255)
{
n.cols <- length(orig.col)
orig.col <- col2rgb(orig.col)
final.col <- rep(NA, n.cols)
for (i in 1:n.cols) {
final.col[i] <- rgb(orig.col[1, i], orig.col[2, i], orig.col[3,
i], alpha = (1 - trans.val) * 255, maxColorValue = maxColorValue)
}
return(final.col)
}
<environment: namespace:yarrr>

Once you know the code underlying a function, you can easily
copy it and edit it to your own liking. Or print it and put it above
your bed. Totally up to you.

Using stop() to completely stop a function and print an error

By default, all the code in a function will be evaluated when it is
executed. However, there may be cases where there’s no point in

226 yarrr! the pirate’s guide to r

evaluating some code and it’s best to stop everything and leave the
function altogether. For example, let’s say you have a function called
do.stats() that has a single argument called mat which is supposed
to be a matrix. If the user accidentally enters a dataframe rather than
a matrix, it might be best to stop the function altogether rather than
to waste time executing code. To tell a function to stop running, use
the stop() function.

If R ever executes a stop() function, it will automatically quit the
function it’s currently evaluating, and print an error message. You
can define the exact error message you want by including a string as
the main argument.

For example, the following function do.stats will print an error
message if the argument mat is not a matrix.

do.stats <- function(mat) {

if(is.matrix(mat) == F) {stop("Argument was not a matrix!")}

Only run if argument is a matrix!

print(paste("Thanks for giving me a matrix. The matrix has ", nrow(mat),

" rows and ", ncol(mat),

" columns. If you did not give me a matrix, the function would have stopped by now!",

sep = ""))

}

Let’s test it. First I’ll enter an argument that is definitely not a
matrix:

do.stats(mat = "not a matrix")

Error in do.stats(mat = "not a matrix"): Argument was not a

matrix!

Now I’ll enter a valid matrix argument:

do.stats(mat = matrix(1:10, nrow = 2, ncol = 5))

[1] "Thanks for giving me a matrix. The matrix has 2 rows and 5 columns. If you did not give me a matrix, the function would have stopped by now!"

Using vectors as inputs

You can use any kind of object as an input to a function. For example,
we could re-create the function oh.god.how.much.did.i.spend by
having a single vector object as the input, rather than three separate

14: writing your own functions 227

values. In this version, we’ll extract the values of a, b and c using
indexing:

oh.god.how.much.did.i.spend <- function(drinks.vec) {

grogg <- drinks.vec[1]

port <- drinks.vec[2]

crabjuice <- drinks.vec[3]

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)

}

To use this function, the pirate will enter the number of drinks
she had as a single vector with length three rather than as 3 separate
scalars.

Storing and loading your functions to and from a function file with source()

As you do more programming in R, you may find yourself writing
several function that you’ll want to use again and again in many
different R scripts. It would be a bit of a pain to have to re-type your
functions every time you start a new R session, but thankfully you
don’t need to do that. Instead, you can store all your functions in one
R file and then load that file into each R session.

I recommend that you put all of your custom R functions into a
single R script with a name like “Custom_R_Functions.R”. Mine is
called "Custom_Pirate_Functions.R”. Once you’ve done this, you
can load all your functions into any R session by using the source()

function. The source function takes a file directory as an argument
(the location of your custom function file) and then executes the R
script into your current session.

For example, on my computer my custom function file is stored
at Users/Nathaniel/Dropbox/Custom_Pirate_Functions.R. When I
start a new R session, I load all of my custom functions by running
the following code:

source(file = "Users/Nathaniel/Dropbox/Custom_Pirate_Functions.R")

Once I’ve run this, I have access to all of my functions, I highly
recommend that you do the same thing!

228 yarrr! the pirate’s guide to r

Test your functions by hard-coding input values

When you start writing more complex functions, with several inputs
and lots of function code, you’ll need to constantly test your function
line-by-line to make sure it’s working properly. However, because the
input values are defined in the input definitions (which you won’t
execute when testing the function), you can’t actually test the code
line-by-line until you’ve defined the input objects in some other way.
To do this, I recommend that you include temporary hard-coded
values for the inputs at the beginning of the function code.

For example, consider the following function called remove.outliers.
The goal of this function is to take a vector of data and remove any
data points that are outliers. This function takes two inputs x and
outlier.def, where x is a vector of numerical data, and outlier.def

is used to define what an outlier is: if a data point is outlier.def

standard deviations away from the mean, then it is defined as an
outlier and is removed from the data vector.

In the following function definition, I’ve included two lines where
I directly assign the function inputs to certain values (in this case, I
set x to be a vector with 100 values of 1, and one outlier value of 999,
and outlier.def to be 2). Now, if I want to test the function code
line by line, I can uncomment these test values, execute the code that
assigns those test values to the input objects, then run the function
code line by line to make sure the rest of the code works.

remove.outliers <- function(x, outlier.def = 2) {

Test values (only used to test the following code)

x <- c(rep(1, 100), 999)

outlier.def <- 2

is.outlier <- x > (mean(x) + outlier.def * sd(x)) |

x < (mean(x) - outlier.def * sd(x))

x.nooutliers <- x[is.outlier == F]

return(x.nooutliers)

}

Trust me, when you start building large complex functions, hard-
coding these test values will save you many headaches. Just don’t
forget to comment them out when you are done testing or the func-
tion will always use those values!

14: writing your own functions 229

Using ... as option inputs

For some functions that you write, you may want the user to be
able to specify inputs to functions within your overall function. For
example, if I create a custom function that includes the histogram
function hist() in R, I might also want the user to be able to specify
optional inputs for the plot, like main, xlab, ylab, etc. However, it
would be a real pain in the pirate ass to have to include all possible
plotting parameters as inputs to our new function. Thankfully, we
can take care of all of this by using the ... notation as an input to
the function.34 The ... input tells R that the user might add additional 34 The ... notation will only pass ar-

guments on to functions that are
specifically written to allow for optional
inputs. If you look at the help menu for
hist(), you’ll see that it does indeed
allow for such option inputs passed on
from other functions.

inputs that should be used later in the function.
Here’s a quick example, let’s create a function called hist.advanced

that plots a histogram with some optional additional arguments
passed on with ...

hist.advanced <- function(x, add.ci = TRUE, ...) {

hist(x, # Main Data

... # Here is where the additional arguments go

)

if(add.ci == TRUE) {

ci <- t.test(x)$conf.int # Get 95% CI

segments(ci[1], 0, ci[2], 0, lwd = 5, col = "red")

mtext(paste("95% CI of Mean = [", round(ci[1], 2), ",",

round(ci[2], 2), "]"), side = 3, line = 0)

}

}

hist.advanced(x = rnorm(100), add.ci = TRUE,
main = "Treasure Chests found",
xlab = "Number of Chests",
col = "lightblue")

Treasure Chests found

Number of Chests

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
15

20

95% CI of Mean = [−0.33 , 0.06]

Now, let’s test our function with the optional inputs main, xlab,
and col. These arguments will be passed down to the hist() func-
tion within hist.advanced(). The result is in margin Figure . As you
can see, R has passed our optional plotting arguments down to the
main hist() function in the function code.

230 yarrr! the pirate’s guide to r

Test Your R Might!

1. Captain Jack is convinced that he can predict how much gold he
will find on an island with the following equation: (a * b) - c * 324

+ log(a), where a is the area of the island in square meters, b is the
number of trees on the island, and c is how drunk he is on a scale
of 1 to 10. Create a function called Jacks.Equation that takes a,
b, and c as arguments and returns Captain Jack’s predictions. See
Figure 83 to see the function in action.

Jacks.Equation(a = 1000, b = 30, c = 7)

[1] 27739

Figure 83: The Jacks.Equation()
custom function in action

2. Write a function called standardize.me that takes a vector x as an
argument, and returns a vector that standardizes the values of x
(standardization means subtracting the mean and dividing by the
standard deviation). See Figure 84 to see the function in action.

standardize.me(c(1, 2, 1, 100))

[1] -0.5067 -0.4865 -0.5067 1.4999

Figure 84: The standardize.me()
custom function in action!

3. Often times you will need to recode values of a dataset. For exam-
ple, if you have a survey of age data, you may want to convert any
crazy values (like anything below 0 or above 100) to NA. Write a
function called recode.numeric() with 3 arguments: x, lb, and
ub. We’ll assume that x is a numeric vector. The function should
look at the values of x, convert any values below lb and above ub
to NA, and then return the resulting vector.

recode.numeric(x = c(5, 3, -100, 4, 3, 1000),
lb = 0,
ub = 10)

[1] 5 3 NA 4 3 NA

Figure 85: The recode.numeric()
custom function

4. Create a function called plot.advanced that creates a scatterplot
with the following arguments:

(a) add.regression, a logical value indicating whether or not to
add a regression line to the plot.

(b) add.means, a logical value indicating whether or not to add a
vertical line at the mean x value and a horizontal line at mean y
value.

(c) add.test, a logical value indicating whether or not to add
text to the top margin of the plot indicating the result of a
correlation test between x and y. (Hint: use mtext() to add the
text)

To see my version of the plot.advanced() function in action,
check out Figure 86.

plot.advanced(x = diamonds$weight,
y = diamonds$value,
add.regression = T,
add.means = T,
add.test = T)

6 8 10 12 14

17
5

18
0

18
5

19
0

19
5

20
0

20
5

x

y

r = 0.61, t(148) = 9.25, p = 0

Figure 86: The plot.advanced()
custom function in action!

15: Loops

Figure 87: Loops in R can be fun.
Just...you know...don’t screw it up.

One of the golden rules of programming is D.R.Y. “Don’t repeat
yourself." Why? Not because you can’t, but because it’s almost
certainly a waste of time. You see, while computers are still much,
much worse than humans at some tasks (like recognizing faces),
they are much, much better than humans at doing a few key things
- like doing the same thing over...and over...and over. To tell R to do
something over and over, we use a loop. Loops are absolutely critical
in conducting many analyses because they allow you to write code
once but evaluate it tens, hundreds, thousands, or millions of times
without ever repeating yourself.

For example, imagine that you conduct a survey of many people
containing 100 yes/no questions. Question 1 might be “Do you
ever shower?” and Question 2 might be ”No seriously, do you ever
shower?!” When you finish the survey, you could store the data
as a dataframe with X rows (where X is the number of people you
surveyed), and 100 columns representing all 100 questions. Now,
because every question should have a yes or no answer, the only
values in the dataframe should be “Y” or “N” Unfortunately, as is
the case with all real world data collection, you will likely get some
invalid responses – like "Maybe" or "What be yee phone number?!”.
For this reason, you’d like to go through all the data, and recode any
invalid response as NA (aka, missing). To do this sequentially, you’d
have to write the following 100 lines of code...

survey.df$q.1[(survey.data$q1 %in% c("Y", "N")) == F] <- NA

survey.df$q.2[(survey.data$q2 %in% c("Y", "N")) == F] <- NA

. ... Wait...I have to type this 98 more times?!

.

. ... My god this is boring...

.

survey.df$q.100[(survey.data$q100 %in% c("Y", "N")) == F] <- NA

Pretty brutal right? Imagine if you have a huge dataset with 1,000

columns, now you’re really doing a lot of typing. Thankfully, with
a loop you can take care of this in no time. Check out this following

232 yarrr! the pirate’s guide to r

code chunk which uses a loop to convert the data for all 100 columns
in our survey dataframe.

for(i in 1:100) { # Loop over all 100 columns

y <- survey.df[, i] # Get data for ith column and save in a new object y

y[(y %in% c("Y", "N")) == F] <- NA # Convert invalid values in y to NA

survey.df[, i] <- y # Assign y back to survey.df!

} # Close loop!

Done. All 100 columns. Take a look at the code and see if you can
understand the general idea. But if not, no worries. By the end of this
chapter, you’ll know all the basics of how to construct loops like this
one.

What are loops?

A loop is, very simply, code that tells a program like R to repeat a
certain chunk of code several times with different values of an index
that changes for every run of the loop. In R, the format of a for-loop
is as follows:

for(loop.object in loop.vector) {

LOOP.CODE

}

As you can see, there are three key aspects of loops: The loop object,
the loop vector, and the loop code:

loop object The object that will change for each iteration of the
loop. In the previous example, the object is just i. You can use any
object name that you want for the index.35 35 While most people use single charac-

ter object names, sometimes it’s more
transparent to use names that tell you
something about the data the object rep-
resents. For example, if you are doing
a loop over participants in a study, you
can call the index participant.i

loop vector A vector specifying all values that the loop object will
take over the loop. You can specify the values any way you’d like
(as long as it’s a vector). If you’re running a loop over numbers,
you’ll probably want to use a:b or seq(). However, if you want
to run a loop over a few specific values, you can just use the c()
function to type the values manually. For example, to run a loop
over three different pirate ships, you could set the index values as
c("Jolly Roger", "Black Pearl", "Queen Anne’s Revenge").

15: loops 233

loop code The code that will be executed for all values in the loop

vector. You can write any R code you’d like in the loop code -
from plotting to analyses.

Printing the integers from 1 to 10

Let’s do a really simple loop that prints the integers from 1 to 10. For
this code, our loop object is i, our loop vector is 1:10, and our loop
code is print(i). You can verbally describe this loop as: For every
integer i between 1 and 10, print the integer i:

Print the integers from 1 to 10

for(i in 1:10) {

print(i)

}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

As you can see, the loop applied the loop.code (which in this case
was print(i)) to every value in the loop vector.

234 yarrr! the pirate’s guide to r

Adding integers from 1 to 100

Let’s use a loop to add all the integers from 1 to 100. To do this, we’ll
need to create an object called current.sum that stores the latest sum
of the numbers as we go through the loop. We’ll set the loop object
to i, the loop vector to 1:100, and the loop code to current.sum <-
current.sum + i. Because we want the starting sum to be 0, we’ll set
the initial value of current.sum to 0. Here is the code:

There’s actually a funny story about
how to quickly add integers (without
a loop). According to the story, a lazy
teacher who wanted to take a nap
decided that the best way to occupy his
students was to ask them to privately
count all the integers from 1 to 100 at
their desks. To his surprise, a young
student approached him after a few
moments with the correct answer: 5050.
The teacher suspected a cheat, but
the student didn’t count the numbers.
Instead he realized that he could use
the formula n(n+1) / 2. Don’t believe
the story? Check it out:

100 * 101 / 2

[1] 5050

This boy grew up to be Gauss, a super
legit mathematician.

Figure 88: Gauss. The guy was a total
pirate. And totally would give us shit
for using a loop to calculate the sum of
1 to 100...

Loop to add integers from 1 to 100

current.sum <- 0 # The starting value of current.sum

for(i in 1:100) {

current.sum <- current.sum + i # Add i to current.sum

}

current.sum # Print the result!

[1] 5050

Looks like we get an answer of 5050. To see if our loop gave us
the correct answer, we can do the same calculation without a loop by
using a:b and the sum() function:

sum(1:100)

[1] 5050

As you can see, the sum(1:100) code was much simpler than our
loop.

15: loops 235

Creating multiple plots with a loop

One of the best uses of a loop is to create multiple graphs quickly
and easily. Let’s use a loop to create 4 plots representing data from
an exam containing 4 questions. The data are represented in a matrix
with 100 rows (representing 100 different people), and 4 columns
representing scores on the different questions. The data are stored in
the yarrr package in an object called examscores.

The first few rows of the examscores
data:

head(examscores)

a b c d
1 43 31 68 34
2 61 27 56 39
3 37 41 74 46
4 54 36 62 41
5 56 34 82 40
6 73 29 79 35

Now, we’ll loop over the columns and create a histogram of the
data in each column. First we’ll create a 2 x 2 plotting space with
par(mfrow = c(2, 2)).

Here’s how the plotting loop works.
First, I set up a 2 x 2 plotting space
with par(mfrow()) (If you haven’t seen
par(mfrow()) before, just know that
it allows you to put multiple plots
side-by-side).

Next, I defined the loop object as
i, and the loop vector as the integers
from 1 to 4 with 1:4. In the loop code,
I stored the data in column i as a new
vector x. Finally, I created a histogram
of the object x!

par(mfrow = c(2, 2)) # Set up a 2 x 2 plotting space

Create the loop.vector (all the columns)
loop.vector <- 1:4

for (i in loop.vector) { # Loop over loop.vector

store data in column.i as x
x <- examscores[,i]

Plot histogram of x
hist(x,

main = paste("Question", i),
xlab = "Scores",
xlim = c(0, 100))

}

Question 1

Scores

F
re

qu
en

cy

0 40 80

0
15

Question 2

Scores

F
re

qu
en

cy

0 40 80

0
30

Question 3

Scores

F
re

qu
en

cy

0 40 80

0
15

Question 4

Scores

F
re

qu
en

cy

0 40 80

0
20

236 yarrr! the pirate’s guide to r

Updating objects with loop results

For many loops, you may want to update values of an object with
each iteration of a loop. We can easily do this using indexing and
assignment within a loop.

Let’s do an example with the examscores dataframe. We’ll use
a loop to calculate how many students failed each of the 4 exams
– where failing is a score less than 50. To do this, we will start by
creating an NA vector called failure.percent

failure.percent <- rep(NA, 4)

We will then use a loop that fills this object with the percentage
of failures for each exam. The loop will go over each column in
examscores, calculates the percentage of scores less than 50 for that
column, and assigns the result to the ith value of failure.percent.
For the loop, our loop object will be i and our loop vector will be
1:4.

Figure 89: This is what I got when I
googled “funny container”.

Loop object is i

Loop index is 1:4

for(i in 1:4) { # Loop over columns 1 through 4

Get the scores for the ith column

x <- examscores[,i]

Calculate the percent of failures

failures.i <- mean(x < 50)

Assign result to the ith value of failure.percent

failure.percent[i] <- failures.i

}

Now let’s look at the result.

To calculate failure.percent with-
out a loop, we’d do the following:

failure.percent <- rep(NA, 4)
failure.percent[1] <- mean(examscores[,1] < 50)
failure.percent[2] <- mean(examscores[,2] < 50)
failure.percent[3] <- mean(examscores[,3] < 50)
failure.percent[4] <- mean(examscores[,4] < 50)
failure.percent

[1] 0.50 1.00 0.03 0.97

As you can see, the results are identi-
cal.

failure.percent

[1] 0.50 1.00 0.03 0.97

It looks like about 50% of the students failed exam 1, everyone
(100%) failed exam 2, 3% failed exam 3, and 97% percent failed exam
4.

15: loops 237

Loops over multiple indices

So far we’ve covered simple loops with a single index value - but
how can you do loops over multiple indices? You could do this
by creating multiple nested loops. However, these are ugly and
cumbersome. Instead, I recommend that you use design matrices to
reduce loops with multiple index values into a single loop with just
one index. Here’s how you do it:

Let’s say you want to calculate the mean, median, and standard
deviation of some quantitative variable for all combinations of two
factors. For a concrete example, let’s say we wanted to calculate
these summary statistics on the age of pirates for all combinations of
colleges and sex.

Design Matrices

To do this, we’ll start by creating a design matrix. This matrix will
have all combinations of our two factors. To create this design matrix
matrix, we’ll use the expand.grid() function. This function takes
several vectors as arguments, and returns a dataframe with all combi-
nations of values of those vectors. For our two factors college and sex,
we’ll enter all the factor values we want. Additionally, we’ll add NA
columns for the three summary statistics we want to calculate

design.matrix <- expand.grid(

"college" = c("JSSFP", "CCCC"), # college factor

"sex" = c("male", "female"), # sex factor

"median.age" = NA, # NA columns for our future calculations

"mean.age" = NA, #...

"sd.age" = NA, #...

stringsAsFactors = F

)

Here’s how the design matrix looks:

design.matrix

college sex median.age mean.age sd.age

1 JSSFP male NA NA NA

2 CCCC male NA NA NA

3 JSSFP female NA NA NA

4 CCCC female NA NA NA

As you can see, the design matrix contains all combinations of our
factors in addition to three NA columns for our future statistics. Now
that we have the matrix, we can use a single loop where the index is

238 yarrr! the pirate’s guide to r

the row of the design.matrix, and the index values are all the rows in
the design matrix. For each index value (that is, for each row), we’ll
get the value of each factor (college and sex) by indexing the current
row of the design matrix. We’ll then subset the pirates dataframe
with those factor values, calculate our summary statistics, then assign
them

for(row.i in 1:nrow(design.matrix)) {

Get factor values for current row

college.i <- design.matrix$college[row.i]

sex.i <- design.matrix$sex[row.i]

Subset pirates with current factor values

data.temp <- subset(pirates, college == college.i & sex == sex.i)

Calculate statistics

median.i <- median(data.temp$age)

mean.i <- mean(data.temp$age)

sd.i <- sd(data.temp$age)

Assign statistics to row.i of design.matrix

design.matrix$median.age[row.i] <- median.i

design.matrix$mean.age[row.i] <- mean.i

design.matrix$sd.age[row.i] <- sd.i

}

Let’s look at the result to see if it worked!

design.matrix

college sex median.age mean.age sd.age

1 JSSFP male 31 32.03 2.643

2 CCCC male 24 23.31 4.270

3 JSSFP female 33 33.81 3.531

4 CCCC female 26 25.89 3.387

Sweet! Our loop filled in the NA values with the statistics we
wanted.

When and when not to use loops

Loops are great because they save you a lot of code. However, a
drawback of loops is that they can be slow relative to other functions.

15: loops 239

For example, let’s say we wanted to create a vector called one.to.ten

that contains the integers from one to ten. We could do this using the
following for-loop:

one.to.ten <- rep(NA, 10) # Create a dummy vector

for (i in 1:10) {one.to.ten[i] <- i} # Assign new values to vector

one.to.ten # Print the result

[1] 1 2 3 4 5 6 7 8 9 10

While this for-loop works just fine, you may have noticed that it’s
a bit silly. Why? Because R has built-in functions for quickly and
easily calculating sequences of numbers. In fact, we used one of those
functions in creating this loop! (See if you can spot it...it’s 1:10). The
lesson is: before creating a loop, make sure there’s not already a
function in R that can do what you want.

240 yarrr! the pirate’s guide to r

Test your R Might!

1. Using a loop, create 4 histograms of the weights of chickens in the
ChickWeight dataset, with a separate histogram for time periods 0,
2, 4 and 6.

2. The following is a dataframe of survey data containing 5 questions
I collected from 6 participants. The response to each question
should be an integer between 1 and 5. Obviously, we have some
invalid values in the dataframe. Let’s fix them. Using a loop,
create a new dataframe called survey.clean where all the invalid
values (those that are not integers between 1 and 10) are set to NA.

survey <- data.frame(

"participant" = c(1, 2, 3, 4, 5, 6),

"q1" = c(5, 3, 2, 7, 11, 5),

"q2" = c(4, 2, 2, 5, 5, 2),

"q3" = c(2, 1, 4, 2, 9, 10),

"q4" = c(2, 5, 2, 5, 4, 2),

"q5" = c(1, 4, -20, 2, 4, 2)

)

Here’s how your survey.clean
dataframe should look:

survey.clean

participant q1 q2 q3 q4 q5
1 1 5 4 2 2 1
2 2 3 2 1 5 4
3 3 2 2 4 2 NA
4 4 7 5 2 5 2
5 5 NA 5 9 4 4
6 6 5 2 10 2 2

3. Now, again using a loop, add a new column to the survey dataframe
called invalid.answers that indicates, for each participant, how
many invalid answers they gave.

4. Standardizing a variable means subtracting the mean, and then
dividing by the standard deviation. Using a loop, create a new
dataframe called survey.B.z that contains standardized versions
of the columns in the following survey.B dataframe.

survey.B <- data.frame(

"participant" = c(1, 2, 3, 4, 5, 6),

"q1" = c(5, 3, 2, 7, 1, 9),

"q2" = c(4, 2, 2, 5, 1, 10),

"q3" = c(2, 1, 4, 2, 9, 10),

"q4" = c(10, 5, 2, 10, 4, 2),

"q5" = c(4, 4, 3, 2, 4, 2)

)

Here’s how your survey.B.z
dataframe should look:

survey.B.z

participant q1 q2 q3 q4 q5
1 1 0.1622 0.0000 -0.6870 1.2247 0.8476
2 2 -0.4867 -0.6086 -0.9446 -0.1361 0.8476
3 3 -0.8111 -0.6086 -0.1718 -0.9526 -0.1695
4 4 0.8111 0.3043 -0.6870 1.2247 -1.1866
5 5 -1.1355 -0.9129 1.1164 -0.4082 0.8476
6 6 1.4600 1.8257 1.3740 -0.9526 -1.1866

16: Data Cleaning and preparation

In this chapter, we’ll cover many tips and tricks for preparing a
dataset for analysis - from recoding values in a dataframe, to merging
two dataframes together, to ... lots of other fun things. Some of the
material here has been covered in other chapters - however, because
data preparation is so important and because so many of these
procedures go together, I thought it would be wise to have them all
in one place.

The Basics

Changing column names in a dataframe

To change the names of the columns in a dataframe, use names(),
indexing, and assignment. For example, to change the name of the
first column in a dataframe called data to "participant", you’d do
the following:

names(data)[1] <- "participant"

If you don’t know the exact index of a column whose name you
want to change, but you know the original name, you can use logical
indexing. For example, to change the name of a column titled sex to
gender, you can do the following:

names(data)[names(data) == "sex"] <- "gender"

Changing the order of columns

You can change the order of columns in a dataframe with indexing
and reassignment. For example, consider the ChickWeight dataframe
which has four columns in the order: weight, Time, Chick and Diet

ChickWeight[1:2,]

242 yarrr! the pirate’s guide to r

Grouped Data: weight ~ Time | Chick

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

As you can see, weight is in the first column, Time is in the second,
Chick is in the third, and Diet is in the fourth. To change the column
order to, say: Chick, Diet, Time, weight, we’ll create a new column in-
dex vector called new.order. This vector will put the original columns
in their new places. So, to put the Chick column first, we’ll start with
a column index of 3 (the original Chick column). To put the Diet
column second, we’ll put the column index 4 next (etc.):

new.order <- c(3, 4, 2, 1)

Chick, Diet, Time, weight

If you only want to move some
columns without changing the others,
you can use the following trick using
the setdiff() function. For example,
let’s say we want to move the two
columns Diet and weight to the front of
the ChickWeight dataset. We’ll create a
new index by combining the names of
the first two columns, with the names
of all remaining columns:

Define first two column names
to.front <- c("Diet", "weight")

Get rest of names with setdiff()
others <- setdiff(names(ChickWeight),

to.front)

Index ChickWeight with c(to.front, others)
ChickWeight <- ChickWeight[c(to.front, others)]

Check Result
ChickWeight[1:2,]

Grouped Data: weight ~ Time | Chick
Diet weight Time Chick
1 1 42 0 1
2 1 51 2 1

If you are working with a dataset with
many columns, this trick can save you a
lot of time

Now, we’ll use reassignment to put the datframe in the new order:

ChickWeight <- ChickWeight[,new.order]

Here is the result:

ChickWeight[1:2,]

Grouped Data: weight ~ Time | Chick

Time Chick weight Diet

1 0 1 42 1

2 2 1 51 1

Instead of using numerical indices, you can also reorder the
columns using a vector of column names. Here’s another index
vector containing the names of the columns in a new order:

new.order <- c("Time", "weight", "Diet", "Chick")

Here is the result:

ChickWeight <- ChickWeight[,new.order]

ChickWeight[1:2,]

Grouped Data: weight ~ Time | Chick

Time weight Diet Chick

1 0 42 1 1

2 2 51 1 1

16: data cleaning and preparation 243

Converting values in a vector or dataframe

In one of the early chapters of this book, we learned how to change
values in a vector item-by-item. For example, to change all values of 1

in a vector called vec to 0, we’d use the code:

vec[vec == 1] <- 0

However, if you need to convert many values in a vector, typing
this type of code over and over can become tedious. Instead, I recom-
mend writing a function to do this. As far as I know, this function
is not stored in base R, so we’ll write one ourselves called recodev()

(which stands for ‘recode vector’). The recodev function is included
in the yarrr package. If you don’t have the package, the full defini-
tion of the function is on the sidebar. – just execute the code in your
R session to use it. The function has 4 inputs

#recodev function
Execute this code in R to use it!

recodev <- function(original.vector,
old.values,
new.values,
others = NULL) {

if(is.null(others)) {

new.vector <- original.vector

}

if(is.null(others) == F) {

new.vector <- rep(others,
length(original.vector))

}

for (i in 1:length(old.values)) {

change.log <- original.vector == old.values[i] &
is.na(original.vector) == F

new.vector[change.log] <- new.values[i]

}

return(new.vector)

}

• original.vector: The original vector that you want to recode

• old.values: A vector of values that you want to replace. For
example, old.values = c(1, 2) means that you want to replace all
values of 1 or 2 in the original vector.

• new.values: A vector of replacement values. This should be the
same length as old.values. For example, new.values = c("male",

"female") means that you want to replace the two values in
old.values with "male" and "female".

• others: An optional value that is used to replace any values in
original.vector that are not found in old.values. For example,
others = NA will convert any values in original.vector not found
in old.values to NA. If you want to leave other values in their
original state, just leave the others argument blank.

Here’s the function in action: Let’s say we have a vector gender

which contains 0s, 1s, and 2s

gender <- c(0, 1, 0, 1, 1, 0, 0, 2, 1)

Let’s use the recodev() function to convert the 0s to "female", 1s to
"male" and 2s to "other"

gender <- recodev(original.vector = gender,
old.values = c(0, 1, 2),
new.values = c("female", "male", "other")

)

Now let’s look at the new version of gender. The former values of
0 should now be female, 1 should now be male, and 2 should now be
other:

244 yarrr! the pirate’s guide to r

gender

[1] "female" "male" "female" "male" "male" "female" "female" "other"
[9] "male"

Changing the class of a vector

If you would like to convert the class of a vector, use a combination
of the as.numeric() and as.character() functions.

For example, the following dataframe called data, has two columns:
one for age and one for gender.

data <- data.frame("age" = c("12", "20", "18", "46"),

"gender" = factor(c("m", "m", "f", "m")),

stringsAsFactors = F

)

str(data)

'data.frame': 4 obs. of 2 variables:

$ age : chr "12" "20" "18" "46"

$ gender: Factor w/ 2 levels "f","m": 2 2 1 2

As you can see, age is coded as a character (not numeric), and
gender is coded as a factor. We’d like to convert age to numeric, and
gender to character.

If we try to calculate the mean() of age
without first converting it to numeric,
we’ll get an error:

We'll get an error because age is not
numeric (yet)
mean(data$age)

Warning in
mean.default(data$age): argument
is not numeric or logical: returning
NA

[1] NA

To make age numeric, just use the as.numeric() function:

data$age <- as.numeric(data$age)

To convert gender from a factor to a character, use the as.character()

function:

data$gender <- as.character(data$gender)

Let’s make sure it worked:

str(data)

'data.frame': 4 obs. of 2 variables:

$ age : num 12 20 18 46

$ gender: chr "m" "m" "f" "m"

Now that age is numeric, we can apply numeric functions like
mean() to the column:

16: data cleaning and preparation 245

mean(data$age)

[1] 24

Splitting numerical data into groups using cut()

When we create some plots and analyses, we may want to group
numerical data into bins of similar values. For example, in our pirate
survey, we might want to group pirates into age decades, where
all pirates in their 20s are in one group, all those in their 30s go
into another group, etc. Once we have these bins, we can calculate
aggregate statistics for each group.

R has a handy function for grouping numerical data called cut()

cut()

x

A vector of numeric data

breaks

Either a numeric vector of two or more unique cut points or a
single number (greater than or equal to 2) giving the number of
intervals into which x is to be cut. For example, breaks = 1:10

will put break points at all integers from 1 to 10, while breaks = 5

will split the data into 5 equal sections.

labels

An optional string vector of labels for each grouping. By default,
labels are constructed using "(a,b]" interval notation. If labels =
FALSE, simple integer codes are returned instead of a factor.

right

A logical value indicating if the intervals should be closed on the
right (and open on the left) or vice versa.

Let’s try a simple example by converting the integers from 1 to 50

into bins of size 10:

cut(1:50, seq(0, 50, 10))

[1] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10]
[9] (0,10] (0,10] (10,20] (10,20] (10,20] (10,20] (10,20] (10,20]
[17] (10,20] (10,20] (10,20] (10,20] (20,30] (20,30] (20,30] (20,30]

246 yarrr! the pirate’s guide to r

[25] (20,30] (20,30] (20,30] (20,30] (20,30] (20,30] (30,40] (30,40]
[33] (30,40] (30,40] (30,40] (30,40] (30,40] (30,40] (30,40] (30,40]
[41] (40,50] (40,50] (40,50] (40,50] (40,50] (40,50] (40,50] (40,50]
[49] (40,50] (40,50]
Levels: (0,10] (10,20] (20,30] (30,40] (40,50]

As you can see, our result is a vector of factors, where the first ten
elements are (0, 10], the next ten elements are (10, 20], and so on. In
other words, the new vector treats all numbers from 1 to 10 as being
the same, and all numbers from 11 to 20 as being the same.

Let’s test the cut() function on the age data from pirates. We’ll
add a new column to the dataset called age.decade, which separates
the age data into bins of size 10. This means that every pirate be-
tween the ages of 10 and 20 will be in the first bin, those between
the ages of 21 and 30 will be in the second bin, and so on. To do this,
we’ll enter pirates$age as the x argument, and seq(10, 60, 10) as
the breaks argument:

pirates$age.decade <- cut(
x = pirates$age, # The raw data
breaks = seq(10, 60, 10) # The break points of the cuts
)

Once you’ve used cut() to convert a
numeric variable into bins, you can then
use aggregate() or dplyr to calculate
aggregate statistics for each bin. For
example, to calculate the mean number
of tattoos of pirates in their 20s, 30s, 40s,
... we could do the following:

Calculate the decade for each pirate

pirates$age.decade <- cut(
pirates$age,
breaks = seq(0, 100, 10)
)

Calculate the mean number of tattoos
in each decade

aggregate(tattoos ~ age.decade,
FUN = mean,
data = pirates)

age.decade tattoos
1 (10,20] 9.545
2 (20,30] 9.350
3 (30,40] 9.445
4 (40,50] 11.909

To show you how this worked, let’s look at the first few rows of
the columns age and age.cut

head(pirates[c("age", "age.decade")])

age age.decade

39 25 (20,30]

854 25 (20,30]

30 26 (20,30]

223 28 (20,30]

351 36 (30,40]

513 29 (20,30]

As you can see, age.cut has correctly converted the original age
variable to a factor.

From these data, we can now easily calculate how many pirates
are in each age group using table()

table(pirates$age.decade)

##

(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]

0 121 585 283 11 0 0 0

(80,90] (90,100]

0 0

16: data cleaning and preparation 247

Merging two dataframes

Merging two dataframes together allows you to combine information
from both dataframes into one. For example, a teacher might have
a dataframe called students containing information about her class.
She then might have another dataframe called exam1scores showing
the scores each student received on an exam. To combine these data
into one dataframe, you can use the merge() function. For those of
you who are used to working with Excel, merge() works a lot like
vlookup in Excel:

merge()

x, y

2 dataframes to be merged

by, by.x, by.y

The names of the columns that will be used for merging. If the
the merging columns have the same names in both dataframes,
you can just use by = c("col.1", "col.2"...). If the merging
columns have different names in both dataframes, use by.x to
name the columns in the x dataframe, and by.y to name the
columns in the y dataframe. For example, if the merging column is
called STUDENT.NAME in dataframe x, and name in dataframe y, you
can enter by.x = "STUDENT.NAME", by.y = "name"

all.x, all.y

A logical value indicating whether or not to include non-matching
rows of the dataframes in the final output. The default value is
all.y = FALSE, such that any non-matching rows in y are not
included in the final merged dataframe.

A generic use of merge(), looks like this:

new.df <- merge(x = df.1, # First dataframe

y = df.2, # Second dataframe

by = "column" # Common column name in both x and y

)

where df.1 is the first dataframe, df.2 is the second dataframe,
and "column" is the name of the column that is common to both
dataframes.

248 yarrr! the pirate’s guide to r

For example, let’s say that we have some survey data in a dataframe
called survey. survey <- data.frame(

"pirate" = 1:10,
"country" = c("Germany",

"Portugal",
"Spain",
"Austria",
"Australia",
"Austria",
"Germany",
"Portugal",
"Portugal",
"Germany"
),

stringsAsFactors = F
)

Here’s how the survey data looks:

survey

pirate country

1 1 Germany

2 2 Portugal

3 3 Spain

4 4 Austria

5 5 Australia

6 6 Austria

7 7 Germany

8 8 Portugal

9 9 Portugal

10 10 Germany

Now, let’s say we want to add some country-specific data to the
dataframe. For example, based on each pirate’s country, we could
add a column called language with the pirate’s native language, and
continent – the continent the pirate is from. To do this, we can start
by creating a new dataframe called country.info, which tell us the
language and continent for each country:

country.info <- data.frame(
"country" = c("Germany", "Portugal",

"Spain", "Austria", "Australia"),
"language" = c("German", "Portugese",

"Spanish", "German", "English"),
"continent" = c("Europe", "Europe", "Europe",

"Europe", "Australia"),
stringsAsFactors = F)

Let’s take a look at the country.info dataframe:

country.info

country language continent
1 Germany German Europe
2 Portugal Portugese Europe
3 Spain Spanish Europe
4 Austria German Europe
5 Australia English Australia

Now, using merge(), we can combine the information from the
country.info dataframe to the survey dataframe:

survey <- merge(survey,

country.info,

by = "country"

)

Let’s look at the result!

survey

country pirate language continent
1 Australia 5 English Australia

16: data cleaning and preparation 249

2 Austria 4 German Europe
3 Austria 6 German Europe
4 Germany 1 German Europe
5 Germany 10 German Europe
6 Germany 7 German Europe
7 Portugal 8 Portugese Europe
8 Portugal 9 Portugese Europe
9 Portugal 2 Portugese Europe
10 Spain 3 Spanish Europe

As you can see, the merge() function added all the country.info

data to the survey data.

Random Data Preparation Tips

Appendix

252 yarrr! the pirate’s guide to r

plot(1, xlim = c(0, 26), ylim = c(0, 26),
type = "n", main = "Named Colors", xlab = "", ylab = "",
xaxt = "n", yaxt = "n")

rect(xleft = rep(1:26, each = 26)[1:length(colors())] - .5,
ybottom = rep(26:1, times = 26)[1:length(colors())] - .5,
xright = rep(1:26, each = 26)[1:length(colors())] + .5,
ytop = rep(26:1, times = 26)[1:length(colors())] + .5,
col = colors()
)

text(x = rep(1:26, each = 26)[1:length(colors())],
y = rep(26:1, times = 26)[1:length(colors())],
labels = colors(), cex = .3
)

Named Colors

white

aliceblue

antiquewhite

antiquewhite1

antiquewhite2

antiquewhite3

antiquewhite4

aquamarine

aquamarine1

aquamarine2

aquamarine3

aquamarine4

azure

azure1

azure2

azure3

azure4

beige

bisque

bisque1

bisque2

bisque3

bisque4

black

blanchedalmond

blue

blue1

blue2

blue3

blue4

blueviolet

brown

brown1

brown2

brown3

brown4

burlywood

burlywood1

burlywood2

burlywood3

burlywood4

cadetblue

cadetblue1

cadetblue2

cadetblue3

cadetblue4

chartreuse

chartreuse1

chartreuse2

chartreuse3

chartreuse4

chocolate

chocolate1

chocolate2

chocolate3

chocolate4

coral

coral1

coral2

coral3

coral4

cornflowerblue

cornsilk

cornsilk1

cornsilk2

cornsilk3

cornsilk4

cyan

cyan1

cyan2

cyan3

cyan4

darkblue

darkcyan

darkgoldenrod

darkgoldenrod1

darkgoldenrod2

darkgoldenrod3

darkgoldenrod4

darkgray

darkgreen

darkgrey

darkkhaki

darkmagenta

darkolivegreen

darkolivegreen1

darkolivegreen2

darkolivegreen3

darkolivegreen4

darkorange

darkorange1

darkorange2

darkorange3

darkorange4

darkorchid

darkorchid1

darkorchid2

darkorchid3

darkorchid4

darkred

darksalmon

darkseagreen

darkseagreen1

darkseagreen2

darkseagreen3

darkseagreen4

darkslateblue

darkslategray

darkslategray1

darkslategray2

darkslategray3

darkslategray4

darkslategrey

darkturquoise

darkviolet

deeppink

deeppink1

deeppink2

deeppink3

deeppink4

deepskyblue

deepskyblue1

deepskyblue2

deepskyblue3

deepskyblue4

dimgray

dimgrey

dodgerblue

dodgerblue1

dodgerblue2

dodgerblue3

dodgerblue4

firebrick

firebrick1

firebrick2

firebrick3

firebrick4

floralwhite

forestgreen

gainsboro

ghostwhite

gold

gold1

gold2

gold3

gold4

goldenrod

goldenrod1

goldenrod2

goldenrod3

goldenrod4

gray

gray0

gray1

gray2

gray3

gray4

gray5

gray6

gray7

gray8

gray9

gray10

gray11

gray12

gray13

gray14

gray15

gray16

gray17

gray18

gray19

gray20

gray21

gray22

gray23

gray24

gray25

gray26

gray27

gray28

gray29

gray30

gray31

gray32

gray33

gray34

gray35

gray36

gray37

gray38

gray39

gray40

gray41

gray42

gray43

gray44

gray45

gray46

gray47

gray48

gray49

gray50

gray51

gray52

gray53

gray54

gray55

gray56

gray57

gray58

gray59

gray60

gray61

gray62

gray63

gray64

gray65

gray66

gray67

gray68

gray69

gray70

gray71

gray72

gray73

gray74

gray75

gray76

gray77

gray78

gray79

gray80

gray81

gray82

gray83

gray84

gray85

gray86

gray87

gray88

gray89

gray90

gray91

gray92

gray93

gray94

gray95

gray96

gray97

gray98

gray99

gray100

green

green1

green2

green3

green4

greenyellow

grey

grey0

grey1

grey2

grey3

grey4

grey5

grey6

grey7

grey8

grey9

grey10

grey11

grey12

grey13

grey14

grey15

grey16

grey17

grey18

grey19

grey20

grey21

grey22

grey23

grey24

grey25

grey26

grey27

grey28

grey29

grey30

grey31

grey32

grey33

grey34

grey35

grey36

grey37

grey38

grey39

grey40

grey41

grey42

grey43

grey44

grey45

grey46

grey47

grey48

grey49

grey50

grey51

grey52

grey53

grey54

grey55

grey56

grey57

grey58

grey59

grey60

grey61

grey62

grey63

grey64

grey65

grey66

grey67

grey68

grey69

grey70

grey71

grey72

grey73

grey74

grey75

grey76

grey77

grey78

grey79

grey80

grey81

grey82

grey83

grey84

grey85

grey86

grey87

grey88

grey89

grey90

grey91

grey92

grey93

grey94

grey95

grey96

grey97

grey98

grey99

grey100

honeydew

honeydew1

honeydew2

honeydew3

honeydew4

hotpink

hotpink1

hotpink2

hotpink3

hotpink4

indianred

indianred1

indianred2

indianred3

indianred4

ivory

ivory1

ivory2

ivory3

ivory4

khaki

khaki1

khaki2

khaki3

khaki4

lavender

lavenderblush

lavenderblush1

lavenderblush2

lavenderblush3

lavenderblush4

lawngreen

lemonchiffon

lemonchiffon1

lemonchiffon2

lemonchiffon3

lemonchiffon4

lightblue

lightblue1

lightblue2

lightblue3

lightblue4

lightcoral

lightcyan

lightcyan1

lightcyan2

lightcyan3

lightcyan4

lightgoldenrod

lightgoldenrod1

lightgoldenrod2

lightgoldenrod3

lightgoldenrod4

lightgoldenrodyellow

lightgray

lightgreen

lightgrey

lightpink

lightpink1

lightpink2

lightpink3

lightpink4

lightsalmon

lightsalmon1

lightsalmon2

lightsalmon3

lightsalmon4

lightseagreen

lightskyblue

lightskyblue1

lightskyblue2

lightskyblue3

lightskyblue4

lightslateblue

lightslategray

lightslategrey

lightsteelblue

lightsteelblue1

lightsteelblue2

lightsteelblue3

lightsteelblue4

lightyellow

lightyellow1

lightyellow2

lightyellow3

lightyellow4

limegreen

linen

magenta

magenta1

magenta2

magenta3

magenta4

maroon

maroon1

maroon2

maroon3

maroon4

mediumaquamarine

mediumblue

mediumorchid

mediumorchid1

mediumorchid2

mediumorchid3

mediumorchid4

mediumpurple

mediumpurple1

mediumpurple2

mediumpurple3

mediumpurple4

mediumseagreen

mediumslateblue

mediumspringgreen

mediumturquoise

mediumvioletred

midnightblue

mintcream

mistyrose

mistyrose1

mistyrose2

mistyrose3

mistyrose4

moccasin

navajowhite

navajowhite1

navajowhite2

navajowhite3

navajowhite4

navy

navyblue

oldlace

olivedrab

olivedrab1

olivedrab2

olivedrab3

olivedrab4

orange

orange1

orange2

orange3

orange4

orangered

orangered1

orangered2

orangered3

orangered4

orchid

orchid1

orchid2

orchid3

orchid4

palegoldenrod

palegreen

palegreen1

palegreen2

palegreen3

palegreen4

paleturquoise

paleturquoise1

paleturquoise2

paleturquoise3

paleturquoise4

palevioletred

palevioletred1

palevioletred2

palevioletred3

palevioletred4

papayawhip

peachpuff

peachpuff1

peachpuff2

peachpuff3

peachpuff4

peru

pink

pink1

pink2

pink3

pink4

plum

plum1

plum2

plum3

plum4

powderblue

purple

purple1

purple2

purple3

purple4

red

red1

red2

red3

red4

rosybrown

rosybrown1

rosybrown2

rosybrown3

rosybrown4

royalblue

royalblue1

royalblue2

royalblue3

royalblue4

saddlebrown

salmon

salmon1

salmon2

salmon3

salmon4

sandybrown

seagreen

seagreen1

seagreen2

seagreen3

seagreen4

seashell

seashell1

seashell2

seashell3

seashell4

sienna

sienna1

sienna2

sienna3

sienna4

skyblue

skyblue1

skyblue2

skyblue3

skyblue4

slateblue

slateblue1

slateblue2

slateblue3

slateblue4

slategray

slategray1

slategray2

slategray3

slategray4

slategrey

snow

snow1

snow2

snow3

snow4

springgreen

springgreen1

springgreen2

springgreen3

springgreen4

steelblue

steelblue1

steelblue2

steelblue3

steelblue4

tan

tan1

tan2

tan3

tan4

thistle

thistle1

thistle2

thistle3

thistle4

tomato

tomato1

tomato2

tomato3

tomato4

turquoise

turquoise1

turquoise2

turquoise3

turquoise4

violet

violetred

violetred1

violetred2

violetred3

violetred4

wheat

wheat1

wheat2

wheat3

wheat4

whitesmoke

yellow

yellow1

yellow2

yellow3

yellow4

yellowgreen

Figure 90: The colors stored in
colors().

appendix 253

Index

%in%, 78

a:b, 44

aggregate(), 119

assignment, 34

c(), 42

correlation, 178

curve(), 149

cut(), 245

glm(), 212

legend(), 150

license, 2

Linear Model, 201

lm(), 202

merge(), 117, 247

read.table(), 111

rep(), 46

rnorm(), 52

runif(), 54

Sammy Davis Jr., 127

sample(), 48

seq(), 45

subset(), 98

t-test, 174

write.table(), 110

	Introduction
	Was Wed Nov 9 2016 a long time ago?
	Why is R so great?

	1: Getting Started (and why R is like a relationship)
	R is like a relationship...
	Installing R and RStudio
	Packages
	The R Reference Card

	1.5: Jump off the plank and dive in
	What's the best way to learn how to swim?
	Wasn't that easy?!

	2: R Basics
	The basics of R programming
	A brief style guide: Commenting and spacing
	Creating new objects with <-
	Test your R might!

	3: Creating scalars and vectors
	Scalars
	Vectors
	Functions to generate numeric vectors
	Generating random data
	Probability Distributions
	Test your R might!

	4: Core vector functions
	Arithmetic operations on vectors
	Summary statistic functions for numeric vectors
	Counting functions for discrete and non-numeric data
	Test your R Might!

	5: Indexing vectors with []
	Indexing vectors with brackets
	Additional ways to create and use logical vectors
	Taking the sum and mean of logical vectors to get counts and percentages
	Using indexing to change specific values of a vector
	Test your R Might!: Movie data

	6: Matrices and Data Frames
	What are matrices and dataframes?
	Creating matrices and dataframe objects
	Matrix and dataframe functions
	Dataframe column names
	Accessing dataframe columns by name with $
	Slicing and dicing dataframes
	Indexing matrices and dataframes with brackets [rows, columns]
	Additional tips
	Test your R might! Pirates and superheroes

	7: Importing, saving, and managing data
	The working directory
	The workspace
	Saving and loading data with .RData files
	Saving and loading data as .txt files
	Additional Tips
	Test your R Might!

	8: Advanced dataframe manipulation
	Merging dataframes with merge()
	aggregate()
	dplyr
	Additional Tips
	Test your R might!: Mmmmm...caffeine

	9: Plotting: Part 1
	How does R manage plots?
	Color basics
	Scatterplot: plot()
	Histogram: hist()
	Barplot: barplot()
	The Pirate Plot: pirateplot()
	Low-level plotting functions
	Adding new points to a plot with points()
	Adding straight lines with abline()
	Adding text to a plot with text()
	Combining text and numbers with paste()
	Additional low-level plotting functions
	Saving plots to a file
	Test your R Might! Purdy pictures

	10: Plotting: Part Deux
	Advanced colors
	Plot margins
	Arranging multiple plots with par(mfrow) and layout
	Additional Tips

	11: Inferential Statistics: 1 and 2-sample Null-Hypothesis tests
	Null vs. Alternative Hypotheses, Descriptive Statistics, Test Statistics, and p-values: A very short introduction
	Null v Alternative Hypothesis
	Hypothesis test objects – htest
	T-test with t.test()
	Correlation test with cor.test()
	Chi-square test
	Getting APA-style conclusions with the apa function
	Test your R might!

	12: ANOVA and Factorial Designs
	Between-Subjects ANOVA
	4 Steps to conduct a standard ANOVA in R
	ANOVA with interactions: (y .17ex x1 * x2)
	Additional tips
	Test your R Might!

	13: Regression
	The Linear Model
	Linear regression with lm()
	Estimating the value of diamonds with lm()
	Including interactions in models: dv x1 * x2
	Comparing regression models with anova()
	Regression on non-Normal data with glm()
	Getting an ANOVA from a regression model with aov()
	Additional Tips
	Test your Might! A ship auction

	14: Writing your own functions
	Why would you want to write your own function?
	The basic structure of a function
	Additional Tips
	Test Your R Might!

	15: Loops
	What are loops?
	Creating multiple plots with a loop
	Updating objects with loop results
	Loops over multiple indices
	When and when not to use loops
	Test your R Might!

	16: Data Cleaning and preparation
	The Basics
	Splitting numerical data into groups using cut()
	Merging two dataframes
	Random Data Preparation Tips

	Appendix
	Index

