Assignment 6: Emoji space 2.0

In this assignment you will preprocess the words included in the streamed tweets and use them to improve
the Emoji space.

1 Load/acquire data

1.1 Tweets
Load your data.

Again, to work well, latent semantic analysis requires a substantial amount of data. I recommend, in principle,
using a dataset rich in Emojis containing 100,000 tweets or more. However, including words in the analysis
will result substantially slower code execution. Thus, while testing your code better use a smaller amount of
tweets (1,000 - 10,000).

1.2 Emojis

Load the new Emoji list. Remember to remove Emoji 2283, if it creates errors.

2 Preprocess words

Extract words and apply a series of preprocessing steps.

2.1 Deconstruct tweets

Split tweets in individual words using stri_split() and " " as the regex pattern. Then, count
the number of words per tweet using lengths(). Use the lengths to create index variable: index =
rep(1l:numberoftweets,vectoroflengths). The index variable will later allow you to reconstruct the
tweets. Next, unlist () the tweets to create a single vector containing all the words of all tweets and call it
words.

2.2 Convert tolower

Convert words to lower case using stri_trans_tolower ().

2.3 Remove Special words

Detect words in words that contain one of http, www, #, 0123456789, rt, &amp using stri_detect_regex().
Replace identified words by NA.

2.4 Remove Stopwords

Load stopword list from here and replace all stopwords in words by NA (using %in%).

2.4 Remove punctuation

Remove all punction from words using stri_replace_all_regex(), [:punct:], and the empty string.


https://dwulff.github.io/_Naturallanguage/Downloads/stopwords_en_tartarus.txt

2.5 Remove short words

Determine number of characters for all words using nchar (). Replace all words with less than 3 characters
by NA.

2.6 Stemming

Stem words using wordStem() from the SnowballC package.

2.7 Reconstruct tweets

Remove from index and words all cases where words == "NA" (wordStem changes NA in "NA"; begin
with index). Then split() the words and reassemble the tweets by using paste(collapse = " ") into
clean_tweets.

3 Identify terms
Identify word terms and combine them with Emojis.

3.1 Remove Emojis

Remove all Emojis from words using stri_detect_regex().

3.2 Count and select

Count words using table() und select, e.g., the most frequent 500 words.

3.3 Create terms

Join Emojis and selected words to create a vector of terms.

4 Rerun last assignment

Rerun the last assignment using terms and clean_tweets.

5 Plot result

5.1 Plot term space
Redo the plot of the last assignment including both Emojis and Words.

5.2 Plot closest associates

Plot the n most frequent Emojis and their k closest associates (in terms of cosine similarity). Place Emojis
in the n rows of the left-most column and then fill the columns of each row from left to right with the ‘k’
closest associates. Choose k and n somewhere between 10 and 30. Add Emojis using the add_emoji() and
the associates using text ().

5.3 Post your results

Post your results on twitter



END



	1 Load/acquire data
	2 Preprocess words
	3 Identify terms
	4 Rerun last assignment
	5 Plot result

